1
|
Roman EKB, Ramos MA, Tomazetto G, Foltran BB, Galvão MH, Ciancaglini I, Tramontina R, de Almeida Rodrigues F, da Silva LS, Sandano ALH, Fernandes DGDS, Almeida DV, Baldo DA, de Oliveira Junior JM, Garcia W, Damasio A, Squina FM. Plastic-degrading microbial communities reveal novel microorganisms, pathways, and biocatalysts for polymer degradation and bioplastic production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174876. [PMID: 39067601 DOI: 10.1016/j.scitotenv.2024.174876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Plastics derived from fossil fuels are used ubiquitously owing to their exceptional physicochemical characteristics. However, the extensive and short-term use of plastics has caused environmental challenges. The biotechnological plastic conversion can help address the challenges related to plastic pollution, offering sustainable alternatives that can operate using bioeconomic concepts and promote socioeconomic benefits. In this context, using soil from a plastic-contaminated landfill, two consortia were established (ConsPlastic-A and -B) displaying versatility in developing and consuming polyethylene or polyethylene terephthalate as the carbon source of nutrition. The ConsPlastic-A and -B metagenomic sequencing, taxonomic profiling, and the reconstruction of 79 draft bacterial genomes significantly expanded the knowledge of plastic-degrading microorganisms and enzymes, disclosing novel taxonomic groups associated with polymer degradation. The microbial consortium was utilized to obtain a novel Pseudomonas putida strain (BR4), presenting a striking metabolic arsenal for aromatic compound degradation and assimilation, confirmed by genomic analyses. The BR4 displays the inherent capacity to degrade polyethylene terephthalate (PET) and produce polyhydroxybutyrate (PHB) containing hydroxyvalerate (HV) units that contribute to enhanced copolymer properties, such as increased flexibility and resistance to breakage, compared with pure PHB. Therefore, BR4 is a promising strain for developing a bioconsolidated plastic depolymerization and upcycling process. Collectively, our study provides insights that may extend beyond the artificial ecosystems established during our experiments and supports future strategies for effectively decomposing and valorizing plastic waste. Furthermore, the functional genomic analysis described herein serves as a valuable guide for elucidating the genetic potential of microbial communities and microorganisms in plastic deconstruction and upcycling.
Collapse
Affiliation(s)
- Ellen Karen Barreto Roman
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Murilo Antonio Ramos
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Geizecler Tomazetto
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bruno Botega Foltran
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | | | - Iara Ciancaglini
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil; Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | | | | | | | - Diógenes G da S Fernandes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Denicezar Angelo Baldo
- Laboratory of Applied Nuclear Physics, University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | | | - Wanius Garcia
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - André Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fabio Marcio Squina
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Programa de Processos Tecnológicos e Ambientais, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| |
Collapse
|
2
|
Salgado JFM, Hervé V, Vera MAG, Tokuda G, Brune A. Unveiling lignocellulolytic potential: a genomic exploration of bacterial lineages within the termite gut. MICROBIOME 2024; 12:201. [PMID: 39407345 PMCID: PMC11481507 DOI: 10.1186/s40168-024-01917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The microbial landscape within termite guts varies across termite families. The gut microbiota of lower termites (LT) is dominated by cellulolytic flagellates that sequester wood particles in their digestive vacuoles, whereas in the flagellate-free higher termites (HT), cellulolytic activity has been attributed to fiber-associated bacteria. However, little is known about the role of individual lineages in fiber digestion, particularly in LT. RESULTS We investigated the lignocellulolytic potential of 2223 metagenome-assembled genomes (MAGs) recovered from the gut metagenomes of 51 termite species. In the flagellate-dependent LT, cellulolytic enzymes are restricted to MAGs of Bacteroidota (Dysgonomonadaceae, Tannerellaceae, Bacteroidaceae, Azobacteroidaceae) and Spirochaetota (Breznakiellaceae) and reflect a specialization on cellodextrins, whereas their hemicellulolytic arsenal features activities on xylans and diverse heteropolymers. By contrast, the MAGs derived from flagellate-free HT possess a comprehensive arsenal of exo- and endoglucanases that resembles that of termite gut flagellates, underlining that Fibrobacterota and Spirochaetota occupy the cellulolytic niche that became vacant after the loss of the flagellates. Furthermore, we detected directly or indirectly oxygen-dependent enzymes that oxidize cellulose or modify lignin in MAGs of Pseudomonadota (Burkholderiales, Pseudomonadales) and Actinomycetota (Actinomycetales, Mycobacteriales), representing lineages located at the hindgut wall. CONCLUSIONS The results of this study refine our concept of symbiotic digestion of lignocellulose in termite guts, emphasizing the differential roles of specific bacterial lineages in both flagellate-dependent and flagellate-independent breakdown of cellulose and hemicelluloses, as well as a so far unappreciated role of oxygen in the depolymerization of plant fiber and lignin in the microoxic periphery during gut passage in HT. Video Abstract.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Vincent Hervé
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Manuel A G Vera
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Gaku Tokuda
- Tropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Andreas Brune
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.
| |
Collapse
|
3
|
Liberato MV, Paixao DAA, Tomazetto G, Ndeh D, Bolam DN, Squina FM. Discovery, structural characterization, and functional insights into a novel apiosidase from the GH140 family, isolated from a lignocellulolytic-enriched mangrove microbial community. Biotechnol Lett 2024; 46:201-211. [PMID: 38280177 DOI: 10.1007/s10529-023-03460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
OBJECTIVES Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase. RESULTS The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions. CONCLUSION This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.
Collapse
Affiliation(s)
- Marcelo Vizona Liberato
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, England
| | - Douglas Antonio Alvaredo Paixao
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Geizecler Tomazetto
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, United States
| | - Didier Ndeh
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, Scotland
| | - David N Bolam
- Biosciences Institute, Newcastle University, Newcastle Upon Tyne, England
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos e Ambientais, Universidade de Sorocaba, Sorocaba, Brazil.
| |
Collapse
|
4
|
Liu X, Zhao F, Wang X, Chen S, Qu J, Sang Y. Prediction and validation of enzymatic degradation of aflatoxin M 1: Genomics and proteomics analysis of Bacillus pumilus E-1-1-1 enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165720. [PMID: 37482353 DOI: 10.1016/j.scitotenv.2023.165720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Aflatoxins are a class of highly toxic mycotoxins. Aflatoxin M1 (AFM1) is hydroxylated metabolite of aflatoxin B1, having comparable toxicity, which is more commonly found in milk. In this study, the whole genome sequencing of Bacillus pumilus E-1-1-1 isolated from feces of 38 kinds of animals, having aflatoxin M1 degradation ability was conducted. Bacterial genome sequencing indicated that a total of 3445 sequences were finally annotated on 23 different cluster of orthologous groups (COG) categories. Then, the potential AFM1 degradation proteins were verified by proteomics; the properties of these proteins were further explored, including protein molecular weight, hydrophobicity, secondary structure prediction, and three-dimensional structures. Bacterial genome sequencing combined with proteomics showed that eight genes were the most capable of degrading AFM1 including three catalases, one superoxide dismutase, and four peroxidases to clone. These eight genes with AFM1 degrading capacity were successfully expressed. These results indicated that AFM1 can be degraded by Bacillus pumilus E-1-1-1 protein and the most degrading proteins were oxidoreductases.
Collapse
Affiliation(s)
- Xiaoyu Liu
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Fangkun Zhao
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Shuiping Chen
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Jingyi Qu
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, 289 Lingyusi Road, Baoding, Hebei 071001, PR China.
| |
Collapse
|
5
|
Li H, Kang X, Yang M, Kasseney BD, Zhou X, Liang S, Zhang X, Wen JL, Yu B, Liu N, Zhao Y, Mo J, Currie CR, Ralph J, Yelle DJ. Molecular insights into the evolution of woody plant decay in the gut of termites. SCIENCE ADVANCES 2023; 9:eadg1258. [PMID: 37224258 DOI: 10.1126/sciadv.adg1258] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/17/2023] [Indexed: 05/26/2023]
Abstract
Plant cell walls represent the most abundant pool of organic carbon in terrestrial ecosystems but are highly recalcitrant to utilization by microbes and herbivores owing to the physical and chemical barrier provided by lignin biopolymers. Termites are a paradigmatic example of an organism's having evolved the ability to substantially degrade lignified woody plants, yet atomic-scale characterization of lignin depolymerization by termites remains elusive. We report that the phylogenetically derived termite Nasutitermes sp. efficiently degrades lignin via substantial depletion of major interunit linkages and methoxyls by combining isotope-labeled feeding experiments and solution-state and solid-state nuclear magnetic resonance spectroscopy. Exploring the evolutionary origin of lignin depolymerization in termites, we reveal that the early-diverging woodroach Cryptocercus darwini has limited capability in degrading lignocellulose, leaving most polysaccharides intact. Conversely, the phylogenetically basal lineages of "lower" termites are able to disrupt the lignin-polysaccharide inter- and intramolecular bonding while leaving lignin largely intact. These findings advance knowledge on the elusive but efficient delignification in natural systems with implications for next-generation ligninolytic agents.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Mengyi Yang
- Xiaoshan Management Center of Termite Control, Hangzhou Xiaoshan Housing Security and Real Estate Management Service Center, Hangzhou 311200, China
| | - Boris Dodji Kasseney
- Department of Zoology, Faculty of Sciences, University of Lomé, 1BP1515 Lomé, Togo
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA
| | - Shiyou Liang
- Agricultural Information Center of Pingyang, Renmin Road 71, Wenzhou 325400, China
| | - Xiaojie Zhang
- Quzhou Management Center of Termite Control, Quzhou Housing Security and Real Estate Management Service Center, Quzhou 311200, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Beijing, Haidian District 100083, China
| | - Baoting Yu
- National Termite Control Center of China, Moganshan Road 695, Hangzhou 310011, China
| | - Ning Liu
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianchu Mo
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou, China
| | - Cameron R Currie
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison WI 53706, USA
- David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - John Ralph
- Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison WI 53706, USA
| | - Daniel J Yelle
- US Forest Products Laboratory, Forest Service, Madison, WI 53726, USA
| |
Collapse
|
6
|
Structural and functional insights of the catalytic GH5 and Calx-β domains from the metagenome-derived endoglucanase CelE2. Enzyme Microb Technol 2023; 165:110206. [PMID: 36758494 DOI: 10.1016/j.enzmictec.2023.110206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Cellulose is the most abundant natural polymer on Earth, representing an attractive feedstock for bioproducts and biofuel production. Cellulases promote the depolymerization of cellulose, generating short oligosaccharides and glucose, which are useful in biotechnological applications. Among the classical cellulases, those from glycoside hydrolase family 5 (GH5) are one of the most abundant in Nature, displaying several modular architectures with other accessory domains attached to its catalytic core, such as carbohydrate-binding modules (CBMs), Ig-like, FN3-like, and Calx-β domains, which can influence the enzyme activity. The metagenome-derived endoglucanase CelE2 has in its modular architecture an N-terminal domain belonging to the GH5 family and a C-terminal domain with a high identity to the Calx-β domain. In this study, the GH5 and the Calx-β domains were subcloned and heterologously expressed in E. coli, to evaluate the structural and functional properties of the individualized domains of CelE2. Thermostability analysis by circular dichroism (CD) revealed a decrease in the denaturation temperature values around 4.6 °C for the catalytic domain (CelE21-381) compared to CelE2 full-length. The CD analyses revealed that the Calx-β domain (CelE2382-477) was unfolded, suggesting that this domain requires to be attached to the catalytic core to become structurally stable. The three-dimensional structure of the catalytic domain CelE21-381 was determined at 2.1 Å resolution, showing a typical (α/β)8-barrel fold and a narrow active site compared to other cellulases from the same family. The biochemical characterization showed that the deletion of the Calx-β domain increased more than 3-fold the activity of the catalytic domain CelE21-381 towards the insoluble substrate Avicel. The main functional properties of CelE2, such as substrate specificity, optimal pH and temperature, thermal stability, and activation by CaCl2, were not altered after the deletion of the accessory domain. Furthermore, the Small Angle X-ray Scattering (SAXS) analyses showed that the addition of CaCl2 was beneficial CelE21-381 protein solvency. This work contributed to fundamental concepts about the structure and function of cellulases, which are useful in applications involving lignocellulosic materials degradation into food and feedstuffs and biofuel production.
Collapse
|