1
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
2
|
Rabie LE, Mohran AA, Gaber KA, Ali NM, Abd El Naby AM, Ghoniem EA, Abd Elmaksod BA, Abdallah AN. Beyond Conventional Treatments: Exploring CAR-T Cell Therapy for Cancer Stem Cell Eradication. Stem Cell Rev Rep 2024; 20:2001-2015. [PMID: 39312080 PMCID: PMC11554798 DOI: 10.1007/s12015-024-10786-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 11/12/2024]
Abstract
BACKGROUND For decades cancer remained the center of attention in the scientific community as its survival rates are low. Researchers from all around the world wanted to know the core of the problem as to what initiates cancer in a patient and helps with its progression. Many postulations came to light, but Cancer Stem Cells (CSC) was the most appealing and convincing. MAIN BODY In this review, we shed light on a potential solution to the problem by reviewing CAR-T cells (Chimeric antigen receptor T cells). These specialized T cells are designed to detect specific antigens on cancer cells. We analyse the steps of their formation from the collection of T cells from the patient's bloodstream and modifying it to exhibit specific CAR structures on their surfaces, to reinjecting them back and evaluating their efficacy. We thoroughly investigate the structure of the CAR design with improvements across different generations. The focus extends to the unique properties of CSCs as in how targeting specific markers on them can enhance the precision of cancer therapy. CONCLUSION Despite the successes, the review discusses the existing limitations and toxicities associated with CAR-derived therapies, highlighting the ongoing need for research and refinement. Looking ahead, we explore proposed strategies aimed at optimizing CAR-T cell therapy to mitigate adverse effects for improved cancer treatments.
Collapse
Affiliation(s)
- Lobna E Rabie
- Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Ahmed A Mohran
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Kholoud A Gaber
- Molecular Biology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nour M Ali
- Chemistry Department, Faculty of Science, KFS University, Kafr El-Sheikh, Egypt
| | - Asmaa M Abd El Naby
- Zoology-Chemistry Department, Faculty of Science, Beni Suef University, Beni Suef, Egypt
| | - Eman A Ghoniem
- Biotechnology and Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Ahmed N Abdallah
- Hormones Department, Medical Research and Clinical Studies Institute, National research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Gharia AA, Bradfield CJ, Jenkins EPW, Fraser IDC, Malliaras GG. Efficient electroporation in primary cells with PEDOT:PSS electrodes. SCIENCE ADVANCES 2024; 10:eado5042. [PMID: 39454003 PMCID: PMC11506140 DOI: 10.1126/sciadv.ado5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Precise and efficient delivery of macromolecules into cells enhances basic biology research and therapeutic applications in cell therapies, drug delivery, and personalized medicine. While pulsed electric field electroporation effectively permeabilizes cell membranes to deliver payloads without the need for toxic chemical or viral transduction agents, conventional bulk electroporation devices face major challenges with cell viability and heterogeneity due to variations in fields generated across cells and electrochemistry at the electrode-electrolyte interface. Here, we introduce the use of microfabricated electrodes based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), which substantially increases cell viability and transfection efficiency. As a proof of concept, we demonstrate the enhanced delivery of Cas9 protein, guide RNA, and plasmid DNA into cell lines and primary cells. This use of PEDOT:PSS enables rapid modification of difficult-to-transfect cell types to accelerate their study and use as therapeutic platforms.
Collapse
Affiliation(s)
- Asmaysinh A. Gharia
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Clinton J. Bradfield
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Elise P. W. Jenkins
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Iain D. C. Fraser
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Sun H, Yu L, Chen Y, Yang H, Sun L. Analysis of In Situ Electroporation Utilizing Induced Electric Field at a Wireless Janus Microelectrode. MICROMACHINES 2024; 15:819. [PMID: 39064330 PMCID: PMC11279304 DOI: 10.3390/mi15070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In situ electroporation, a non-invasive technique for enhancing the permeability of cell membranes, has emerged as a powerful tool for intracellular delivery and manipulation. This method allows for the precise introduction of therapeutic agents, such as nucleic acids, drugs, and proteins, directly into target cells within their native tissue environment. Herein, we introduce an innovative electroporation strategy that employs a Janus particle (JP)-based microelectrode to generate a localized and controllable electric field within a microfluidic chip. The microfluidic device is engineered with an indium tin oxide (ITO)-sandwiched microchannel, where the electric field is applied, and suspended JP microelectrodes that induce a stronger localized electric field. The corresponding simulation model is developed to better understand the dynamic electroporation process. Numerical simulations for both single-cell and chain-assembled cell electroporation have been successfully conducted. The effects of various parameters, including pulse voltage, duration medium conductivity, and radius of Janus microelectrode, on cell membrane permeabilization are systematically investigated. Our findings indicate that the enhanced electric intensity near the poles of the JP microelectrode significantly contributes to the electroporation process. In addition, the distribution for both transmembrane voltage and the resultant nanopores can be altered by conveniently adjusting the relative position of the JP microelectrode, demonstrating a selective and in situ electroporation technique for spatial control over the delivery area. Moreover, the obtained differences in the distribution of electroporation between chain cells can offer insightful directives for the electroporation of tissues or cell populations, enabling the precise and targeted modulation of specific cell populations. As a proof of concept, this work can provide a robust alternative technique for the study of complex and personalized cellular processes.
Collapse
Affiliation(s)
- Haizhen Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Linkai Yu
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Yifan Chen
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Hao Yang
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| | - Lining Sun
- School of Mechanical and Electric Engineering, Soochow University, Suzhou 215299, China; (L.Y.); (Y.C.); (L.S.)
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Chen Y, Liu C, Fang Y, Chen W, Qiu J, Zhu M, Wei W, Tu J. Developing CAR-immune cell therapy against SARS-CoV-2: Current status, challenges and prospects. Biochem Pharmacol 2024; 222:116066. [PMID: 38373592 DOI: 10.1016/j.bcp.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Chimeric antigen receptor (CAR)-immune cell therapy has revolutionized the anti-tumor field, achieving efficient and precise tumor clearance by directly guiding immune cell activity to target tumors. In addition, the use of CAR-immune cells to influence the composition and function of the immune system and ultimately achieve virus clearance and immune system homeostasis has attracted the interest of researchers. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a global pandemic of coronavirus disease 2019 (COVID-19). To date, the rapidly mutating SARS-CoV-2 continues to challenge existing therapies and has raised public concerns regarding reinfection. In patients with COVID-19, the interaction of SARS-CoV-2 with the immune system influences the course of the disease, and the coexistence of over-activated immune system components, such as macrophages, and severely compromised immune system components, such as natural killer cells, reveals a dysregulated immune system. Dysregulated immune-induced inflammation may impair viral clearance and T-cell responses, causing cytokine storms and ultimately leading to patient death. Here, we summarize the research progress on the use of CAR-immune cells against SARS-CoV-2 infection. Furthermore, we discuss the feasibility, challenges and prospect of CAR-immune cells as a new immune candidate therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Chong Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Weile Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
6
|
Wu J, Wu W, Zhou B, Li B. Chimeric antigen receptor therapy meets mRNA technology. Trends Biotechnol 2024; 42:228-240. [PMID: 37741706 DOI: 10.1016/j.tibtech.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
Genetically engineered immune cells expressing chimeric antigen receptors (CARs) have emerged as a new game changer in cancer immunotherapy. The utility of CAR T cell therapy against hematological malignancies has been validated in clinical practice. Other CAR immune cells are currently under investigation to improve the potency of CAR therapy in solid tumors. As a new class of therapeutic modalities, mRNA-based therapeutics hold enormous potential beyond COVID-19 mRNA vaccines. Arming immune cells with mRNA-encoded CARs represents a new frontier in cancer and beyond, enabling in vivo generation of CAR cells without causing transgene integration. In this review, we summarize recent advances in mRNA-based CAR immunotherapies and highlight their opportunities and challenges for the development of a new generation of living drugs.
Collapse
Affiliation(s)
- Jiacai Wu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weigang Wu
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China
| | - Boping Zhou
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Bin Li
- Department of Infectious Disease, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology and The Second Clinical Medical College of Jinan University, Shenzhen 518020, China; School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
7
|
Yu T, Jhita N, Shankles P, Fedanov A, Kramer N, Raikar SS, Sulchek T. Development of a microfluidic cell transfection device into gene-edited CAR T cell manufacturing workflow. LAB ON A CHIP 2023; 23:4804-4820. [PMID: 37830228 PMCID: PMC10701762 DOI: 10.1039/d3lc00311f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Genetic reprogramming of immune cells to recognize and target tumor cells offers a possibility of long-term cure. Cell therapies, however, lack simple and affordable manufacturing workflows, especially to genetically edit immune cells to more effectively target cancer cells and avoid immune suppression mechanisms. Microfluidics is a pathway to improve the manufacturing precision of gene modified cells. However, to date, it remains to be demonstrated that microfluidic treatment preserves the functionality of T cell products in a complete workflow. In this study, we used microfluidics to perform CRISPR/Cas9 gene editing of CD5, a negative T-cell regulator, followed by the insertion of a chimeric antigen receptor (CAR) transgene via lentiviral vector transduction to generate CAR T cells targeted against the B cell antigen CD19. As part of the workflow, we have optimized a microfluidic device that relies on convective volume exchange between cells and surrounding fluid to deliver guide RNA and Cas9 ribonucleoprotein to primary T cells. We comprehensively tested critical design features of the device to improve the gene-edited product yield. By combining high-speed video and cell mechanics measurements using the atomic force microscope, we validate a model that relates the device design features to cell properties. Our findings showed enhanced performance was obtained by focusing the cells to counteract the flow resistance caused by the ridge constrictions, providing a ridge layout that allows sufficient cycles of compression and time for volume recovery, and including a gutter to clear aggregates that could reduce cell viability. The optimized device was used in a workflow to generate CD5-knockout CD19 CAR T cells. The microfluidics approach resulted in >60% CD5 editing efficiency, ≥80% cell viability, similar memory phenotype composition as unprocessed cells, and superior cell growth. The microfluidics workflow yielded 4-fold increase of edited T cells compared to an electroporation workflow post-expansion. The transduced CAR T cells showed similar transduction efficiency and cytotoxicity against CD19-positive leukemia cells. Moreover, patient-derived T cells showed the ability to be similarly edited, though their distinct biomechanics resulted in slightly lower outcomes. Microfluidics-based manufacturing is a promising path towards more productive clinical manufacturing of gene edited CAR T cells.
Collapse
Affiliation(s)
- Tong Yu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Navdeep Jhita
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Peter Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| | - Andrew Fedanov
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Noah Kramer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Sunil S Raikar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine and Children's Healthcare of Atlanta, 1760 Haygood Drive, Health Sciences Research Building, Atlanta, GA 30322, USA.
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30318, USA.
| |
Collapse
|
8
|
Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks. Front Immunol 2023; 14:1212476. [PMID: 37691932 PMCID: PMC10484345 DOI: 10.3389/fimmu.2023.1212476] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Immunotherapy has ushered in a new era in cancer treatment, and cancer immunotherapy continues to be rejuvenated. The clinical goal of cancer immunotherapy is to prime host immune system to provide passive or active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs) play an immunomodulatory role in tumor microenvironment (TME) which is closely related to immune escape of tumor cells, thus influence tumor progress. Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs), cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and promise. In this review, we will summarize the recent research advances in tumor immunotherapy, including the molecular mechanisms and clinical effects as well as limitations of immunotherapy.
Collapse
Affiliation(s)
- Rui Rui
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
9
|
Niu H, Zhao P, Sun W. Biomaterials for chimeric antigen receptor T cell engineering. Acta Biomater 2023; 166:1-13. [PMID: 37137403 DOI: 10.1016/j.actbio.2023.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.
Collapse
Affiliation(s)
- Huanqing Niu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Penghui Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; Center for Emerging, Zoonotic, and Arthropod-Born Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
10
|
Liu J, Zhang Y, Guo R, Zhao Y, Sun R, Guo S, Lu W, Zhao M. Targeted CD7 CAR T-cells for treatment of T-Lymphocyte leukemia and lymphoma and acute myeloid leukemia: recent advances. Front Immunol 2023; 14:1170968. [PMID: 37215124 PMCID: PMC10196106 DOI: 10.3389/fimmu.2023.1170968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
The high expression of CD7 targets in T-cell acute lymphoblastic leukemia (T-ALL) and T-lymphoma has attracted considerable attention from researchers. However, because CD7 chimeric antigen receptor (CAR) T-cells undergo fratricide, CD7 CAR T-cells develop an exhaustion phenotype that impairs the effect of CAR T-cells. There have been significant breakthroughs in CD7-targeted CAR T-cell therapy in the past few years. The advent of gene editing, protein blockers, and other approaches has effectively overcome the adverse effects of conventional methods of CD7 CAR T-cells. This review, in conjunction with recent advances in the 64th annual meeting of the American Society of Hematology (ASH), provides a summary of the meaningful achievements in CD7 CAR T-cell generations and clinical trials over the last few years.
Collapse
Affiliation(s)
- Jile Liu
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Yi Zhang
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Ruiting Guo
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Yifan Zhao
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Rui Sun
- Department of Hematology, School of Medicine, Nankai University, Tianjin, China
| | - Shujing Guo
- Department of Hematology, First Center Clinic College of Tianjin Medical University, Tianjin, China
| | - Wenyi Lu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
11
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies’ clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.,The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,XiangYa School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
12
|
Abstract
Electroporation (EP) is a commonly used strategy to increase cell permeability for intracellular cargo delivery or irreversible cell membrane disruption using electric fields. In recent years, EP performance has been improved by shrinking electrodes and device structures to the microscale. Integration with microfluidics has led to the design of devices performing static EP, where cells are fixed in a defined region, or continuous EP, where cells constantly pass through the device. Each device type performs superior to conventional, macroscale EP devices while providing additional advantages in precision manipulation (static EP) and increased throughput (continuous EP). Microscale EP is gentle on cells and has enabled more sensitive assaying of cells with novel applications. In this Review, we present the physical principles of microscale EP devices and examine design trends in recent years. In addition, we discuss the use of reversible and irreversible EP in the development of therapeutics and analysis of intracellular contents, among other noteworthy applications. This Review aims to inform and encourage scientists and engineers to expand the use of efficient and versatile microscale EP technologies.
Collapse
Affiliation(s)
- Sung-Eun Choi
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Harrison Khoo
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Soojung Claire Hur
- Department of Mechanical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Institute for NanoBioTechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 401 North Broadway, Baltimore, Maryland 21231, United States
| |
Collapse
|
13
|
Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: a literature review. Mol Biol Rep 2022; 49:10627-10633. [PMID: 35715610 DOI: 10.1007/s11033-022-07633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy procedure includes taking personal T cells and processing or genetic engineering using specific antigens and in vitro expanding and eventually infusing into the patient's body to unleash immune responses. Adoptive cell therapy (ACT) includes lymphocytes taking, in vitro selection and expansion and processing for stimulation or activation and infusion into the patient's body. Immune checkpoint inhibitors (ICIs), ACT and CAR-T cell therapies have demonstrated acceptable results. However, rare CAR-T cells tissue infiltration, off-target toxicity and resistance development include main disadvantages of CAR-T cell based therapy. Selection of suitable target antigens and novel engineered immune cells are warranted in future studies using "surfaceome" analysis. Employment of cytokines (IL-2, IL-7) for T cells activation has been also associated with specific anti-melanoma function which overcome telomeres shortening and further T cells differentiation. In resistant cases, rapidly accelerated fibrosarcoma B-type and mitogen-activated extracellular signal-regulated kinase inhibitors have been mostly applied. The aim of this study was evaluation of CAR-T cell and adoptive cell therapies efficiency for the treatment of melanoma.
Collapse
|