1
|
Song C, Wu X, Wang Y, Wang J, Zhao Y. Cuttlefish-Inspired Photo-Responsive Antibacterial Microparticles with Natural Melanin Nanoparticles Spray. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310444. [PMID: 38050927 DOI: 10.1002/smll.202310444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Topical antibiotics can be utilized to treat periodontitis, while their delivery stratagems with controlled release and long-lasting bactericidal inhibition are yet challenging. Herein, inspired by the defensive behavior of cuttlefish expelling ink, this work develops innovative thermal-responsive melanin-integrated porous microparticles (MPs) through microfluidic synthesis for periodontitis treatment. These MPs are composed of melanin nanoparticles (NPs), poly(N-isopropylacrylamide) (PNIPAM), and agarose. Benefiting from the excellent biocompatibility and large surface area ratio of MPs, they can deliver abundant melanin NPs. Under near-infrared irradiation, the melanin NPs can convert photo energy into thermal energy. This leads to agarose melting and subsequent shrinkage of the microspheres induced by pNIPAM, thereby facilitating the release of melanin NPs. In addition, the released melanin NPs can serve as a highly effective photothermal agent, displaying potent antibacterial activity against porphyromonas gingivalis and possessing natural anti-inflammatory properties. These unique characteristics are further demonstrated through in vivo experiments, showing the antibacterial effects in the treatment of infected wounds and periodontitis. Therefore, the catfish-inspired photo-responsive antibacterial MPs with controlled-release drug delivery hold tremendous potential in clinical antibacterial applications.
Collapse
Affiliation(s)
- Chuanhui Song
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiangyi Wu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jinglin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
2
|
Luo Z, Zhang H, Chen R, Li H, Cheng F, Zhang L, Liu J, Kong T, Zhang Y, Wang H. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization. MICROSYSTEMS & NANOENGINEERING 2023; 9:103. [PMID: 37593440 PMCID: PMC10427687 DOI: 10.1038/s41378-023-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 08/19/2023]
Abstract
Conventional manufacturing techniques to fabricate microfluidic chips, such as soft lithography and hot embossing process, have limitations that include difficulty in preparing multiple-layered structures, cost- and labor-consuming fabrication process, and low productivity. Digital light processing (DLP) technology has recently emerged as a cost-efficient microfabrication approach for the 3D printing of microfluidic chips; however, the fabrication resolution for microchannels is still limited to sub-100 microns at best. Here, we developed an innovative DLP printing strategy for high resolution and scalable microchannel fabrication by dosing- and zoning-controlled vat photopolymerization (DZC-VPP). Specifically, we proposed a modified mathematical model to precisely predict the accumulated UV irradiance for resin photopolymerization, thereby providing guidance for the fabrication of microchannels with enhanced resolution. By fine-tuning the printing parameters, including optical irradiance, exposure time, projection region, and step distance, we can precisely tailor the penetration irradiance stemming from the photopolymerization of the neighboring resin layers, thereby preventing channel blockage due to UV overexposure or compromised bonding stability owing to insufficient resin curing. Remarkably, this strategy can allow the preparation of microchannels with cross-sectional dimensions of 20 μm × 20 μm using a commercial printer with a pixel size of 10 μm × 10 μm; this is significantly higher resolution than previous reports. In addition, this method can enable the scalable and biocompatible fabrication of microfluidic drop-maker units that can be used for cell encapsulation. In general, the current DZC-VPP method can enable major advances in precise and scalable microchannel fabrication and represents a significant step forward for widespread applications of microfluidics-based techniques in biomedical fields.
Collapse
Affiliation(s)
- Zhiming Luo
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Haoyue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Runze Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Hanting Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Fang Cheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| | - Lijun Zhang
- Third People’s Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024 P. R. China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital of The, Chinese University of Hong Kong, Shenzhen, 518172 P. R. China
| | - Tiantian Kong
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Yang Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
| | - Huanan Wang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518000 P. R. China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian, 116024 P. R. China
| |
Collapse
|