1
|
Mudugamuwa A, Roshan U, Hettiarachchi S, Cha H, Musharaf H, Kang X, Trinh QT, Xia HM, Nguyen N, Zhang J. Periodic Flows in Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404685. [PMID: 39246195 PMCID: PMC11636114 DOI: 10.1002/smll.202404685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time-dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ-on-a-chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Collapse
Affiliation(s)
- Amith Mudugamuwa
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Uditha Roshan
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Hafiz Musharaf
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Xiaoyue Kang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Huan Ming Xia
- School of Mechanical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Nam‐Trung Nguyen
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
- School of Engineering and Built EnvironmentGriffith UniversityBrisbaneQLD4111Australia
| |
Collapse
|
2
|
Wu J, Fang H, Zhang J, Yan S. Modular microfluidics for life sciences. J Nanobiotechnology 2023; 21:85. [PMID: 36906553 PMCID: PMC10008080 DOI: 10.1186/s12951-023-01846-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The advancement of microfluidics has enabled numerous discoveries and technologies in life sciences. However, due to the lack of industry standards and configurability, the design and fabrication of microfluidic devices require highly skilled technicians. The diversity of microfluidic devices discourages biologists and chemists from applying this technique in their laboratories. Modular microfluidics, which integrates the standardized microfluidic modules into a whole, complex platform, brings the capability of configurability to conventional microfluidics. The exciting features, including portability, on-site deployability, and high customization motivate us to review the state-of-the-art modular microfluidics and discuss future perspectives. In this review, we first introduce the working mechanisms of the basic microfluidic modules and evaluate their feasibility as modular microfluidic components. Next, we explain the connection approaches among these microfluidic modules, and summarize the advantages of modular microfluidics over integrated microfluidics in biological applications. Finally, we discuss the challenge and future perspectives of modular microfluidics.
Collapse
Affiliation(s)
- Jialin Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Hui Fang
- Nanophotonics Research Center, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
3
|
Thurgood P, Needham S, Pirogova E, Peter K, Baratchi S, Khoshmanesh K. Dynamic Vortex Generation, Pulsed Injection, and Rapid Mixing of Blood Samples in Microfluidics Using the Tube Oscillation Mechanism. Anal Chem 2023; 95:3089-3097. [PMID: 36692453 DOI: 10.1021/acs.analchem.2c05456] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Here, we describe the generation of dynamic vortices in micro-scale cavities at low flow rates. The system utilizes a computer-controlled audio speaker to axially oscillate the inlet tube of the microfluidic system at desired frequencies and amplitudes. The oscillation of the tube induces transiently high flow rates in the system, which facilitates the generation of dynamic vortices inside the cavity. The size of the vortices can be modulated by varying the tube oscillation frequency or amplitude. The vortices can be generated in single or serial cavities and in a wide range of cavity sizes. We demonstrate the suitability of the tube oscillation mechanism for the pulsed injection of water-based solutions or whole blood into the cavity. The injection rate can be controlled by the oscillation characteristics of the tube, enabling the injection of liquids at ultralow flow rates. The dynamic vortices facilitate the rapid mixing of the injected liquid with the main flow. The controllability and versatility of this technology allow for the development of programmable inertial microfluidic systems for performing multistep biological assays.
Collapse
Affiliation(s)
- Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria3001, Australia
| | - Scott Needham
- Leading Technology Group, Camberwell, Victoria3124, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Victoria3001, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria3004, Australia.,Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria3052, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria3082, Australia
| | | |
Collapse
|
4
|
Zhang T, Cain AK, Semenec L, Liu L, Hosokawa Y, Inglis DW, Yalikun Y, Li M. Microfluidic Separation and Enrichment of Escherichia coli by Size Using Viscoelastic Flows. Anal Chem 2023; 95:2561-2569. [PMID: 36656064 DOI: 10.1021/acs.analchem.2c05084] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Here, we achieve the separation and enrichment of Escherichia coli clusters from its singlets in a viscoelastic microfluidic device. E. coli, an important prokaryotic model organism and a widely used microbial factory, can aggregate in clusters, leading to biofilm development that can be detrimental to human health and industrial processes. The ability to obtain high-purity populations of E. coli clusters is of significance for biological, biomedical, and industrial applications. In this study, polystyrene particles of two different sizes, 1 and 4.8 μm, are used to mimic E. coli singlets and clusters, respectively. Experimental results show that particles migrate toward the channel center in a size-dependent manner, due to the combined effects of inertial and elastic forces; 4.8 and 1 μm particles are found to have lateral equilibrium positions closer to the channel centerline and sidewalls, respectively. The size-dependent separation performance of the microdevice is demonstrated to be affected by three main factors: channel length, the ratio of sheath to sample flow rate, and poly(ethylene oxide) (PEO) concentration. Further, the separation of E. coli singlets and clusters is achieved at the outlets, and the separation efficiency is evaluated in terms of purity and enrichment factor.
Collapse
Affiliation(s)
- Tianlong Zhang
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Amy K Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lucie Semenec
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ling Liu
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
5
|
Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Thurgood P, Chheang C, Needham S, Pirogova E, Peter K, Baratchi S, Khoshmanesh K. Generation of dynamic vortices in a microfluidic system incorporating stenosis barrier by tube oscillation. LAB ON A CHIP 2022; 22:1917-1928. [PMID: 35420623 DOI: 10.1039/d2lc00135g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microfluidic systems incorporating sudden expansions are widely used for generation of vortex flow patterns. However, the formation of vortices requires high flow rates to induce inertial effects. Here, we introduce a new method for generating dynamic vortices in microfluidics at low static flow rates. Human blood is driven through a microfluidic channel incorporating a semi-circular stenosis barrier. The inlet tube of the channel is axially oscillated using a computer-controlled audio-speaker. The tube oscillation induces high transient flow rates in the channel, which generates dynamic vortices across the stenosis barrier. The size of the vortices can be modulated by varying the frequency and amplitude of tube oscillation. Various vortex flow patterns can be generated by varying the flow rate. The formation and size of the vortices can be predicted using the Reynolds number of the oscillating tube. We demonstrate the potential application of the system for investigating the adhesion and phagocytosis of circulating immune cells under pathologically high shear rates induced at the stenosis. This approach facilitates the development of versatile and controllable inertial microfluidic systems for performing various cellular assays while operating at low static flow rates and low sample volumes.
Collapse
Affiliation(s)
- Peter Thurgood
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.
| | - Chanly Chheang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | - Scott Needham
- Leading Technology Group, Bayswater, Victoria, Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Melbourne, Victoria, Australia.
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | |
Collapse
|