1
|
Gui F, Foerster R, Wieduwilt T, Zeisberger M, Kim J, Schmidt MA. Capillary-assisted flat-field formation: a platform for advancing nanoparticle tracking analysis in an integrated on-chip optofluidic environment. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3135-3145. [PMID: 39634944 PMCID: PMC11501659 DOI: 10.1515/nanoph-2024-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/07/2024] [Indexed: 12/07/2024]
Abstract
Here, we present the concept of flat-field capillary-assisted nanoparticle tracking analysis for the characterization of fast diffusing nano-objects. By combining diffusion confinement and spatially invariant illumination, i.e., flat-fields, within a fiber-interfaced on-chip environment, ultra-long trajectories of fast diffusing objects within large microchannels have been measured via diffraction-limited imaging. Our study discusses the design procedure, explains potential limitations, and experimentally confirms flat-field formation by tracking gold nanospheres. The presented concept enables generating flat-fields in a novel on-chip optofluidic platform for the characterization of individual nano-objects for fundamental light/matter investigations or applications in bioanalytics and nanoscale material science.
Collapse
Affiliation(s)
- Fengji Gui
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Ronny Foerster
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Torsten Wieduwilt
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Matthias Zeisberger
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Jisoo Kim
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
| | - Markus A. Schmidt
- The Department of Fiber Photonics, Leibniz Institute of Photonic Technology, Albert-Einstein-Street 9, 07745Jena, Germany
- Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743Jena, Germany
| |
Collapse
|
2
|
Fiber-based 3D nano-printed holography with individually phase-engineered remote points. Sci Rep 2022; 12:20920. [PMID: 36463325 PMCID: PMC9719565 DOI: 10.1038/s41598-022-25380-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The generation of tailored light fields with spatially controlled intensity and phase distribution is essential in many areas of science and application, while creating such patterns remotely has recently defined a key challenge. Here, we present a fiber-compatible concept for the remote generation of complex multi-foci three-dimensional intensity patterns with adjusted relative phases between individual foci. By extending the well-known Huygens principle, we demonstrate, in simulations and experiments, that our interference-based approach enables controlling of both intensity and phase of individual focal points in an array of spots distributed in all three spatial directions. Holograms were implemented using 3D nano-printing on planar substrates and optical fibers, showing excellent agreement between design and implemented structures. In addition to planar substrates, holograms were also generated on modified single-mode fibers, creating intensity distributions consisting of about 200 individual foci distributed over multiple image planes. The presented scheme yields an innovative pathway for phase-controlled 3D digital holography over remote distances, yielding an enormous potential application in fields such as quantum technology, life sciences, bioanalytics and telecommunications. Overall, all fields requiring precise excitation of higher-order optical resonances, including nanophotonics, fiber optics and waveguide technology, will benefit from the concept.
Collapse
|
3
|
Kim J, Förster R, Wieduwilt T, Jang B, Bürger J, Gargiulo J, de S Menezes L, Rossner C, Fery A, Maier SA, Schmidt MA. Locally Structured On-Chip Optofluidic Hollow-Core Light Cages for Single Nanoparticle Tracking. ACS Sens 2022; 7:2951-2959. [PMID: 36260351 DOI: 10.1021/acssensors.2c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanoparticle tracking analysis (NTA) is a widely used methodology to investigate nanoscale systems at the single species level. Here, we introduce the locally structured on-chip optofluidic hollow-core light cage, as a novel platform for waveguide-assisted NTA. This hollow waveguide guides light by the antiresonant effect in a sparse array of dielectric strands and includes a local modification to realize aberration-free tracking of individual nano-objects, defining a novel on-chip solution with properties specifically tailored for NTA. The key features of our system are (i) well-controlled nano-object illumination through the waveguide mode, (ii) diffraction-limited and aberration-free imaging at the observation site, and (iii) a high level of integration, achieved by on-chip interfacing to fibers. The present study covers all aspects relevant for NTA including design, simulation, implementation via 3D nanoprinting, and optical characterization. The capabilities of the approach to precisely characterize practically relevant nanosystems have been demonstrated by measuring the solvency-induced collapse of a nanoparticle system which includes polymer brush-based shells that react to changes in the liquid environment. Our study unlocks the advantages of the light cage approach in the context of NTA, suggesting its application in various areas such as bioanalytics, life science, environmental science, or nanoscale material science in general.
Collapse
Affiliation(s)
- Jisoo Kim
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany
| | - Torsten Wieduwilt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany
| | - Bumjoon Jang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany
| | - Johannes Bürger
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Julian Gargiulo
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany
| | - Leonardo de S Menezes
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany.,Departamento de Física, Universidade Federal de Pernambuco, 50670-901Recife-PE, Brazil
| | - Christian Rossner
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069Dresden, Germany
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nano Institute Munich, Ludwig-Maximilians-Universität Munich, 80799Munich, Germany.,The Blackett Laboratory, Department of Physics, Imperial College London, LondonSW7 2AZ, United Kingdom.,School of Physics and Astronomy, Monash University, Clayton, Victoria3800, Australia
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745Jena, Germany.,Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743Jena, Germany.,Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743Jena, Germany
| |
Collapse
|