1
|
Kang X, Ma J, Cha H, Hansen HHWB, Chen X, Ta HT, Tian F, Nguyen NT, Klimenko A, Zhang J, Yuan D. Ultra-Stretchable Microfluidic Devices for Optimizing Particle Manipulation in Viscoelastic Fluids. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39496575 DOI: 10.1021/acsami.4c15893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Viscoelastic microfluidics leverages the unique properties of non-Newtonian fluids to manipulate and separate micro- or submicron particles. Channel geometry and dimension are crucial for device performance. Traditional rigid microfluidic devices require numerous iterations of fabrication and testing to optimize these parameters, which is time-consuming and costly. In this work, we developed a flexible microfluidic device using ultra-stretchable and biocompatible Flexdym material to overcome this issue. Our device allows for simultaneous modification of channel dimensions by external stretching. We fabricated a stretchable device with an initial square microchannel (30 μm × 30 μm), and the channel aspect ratio can be adjusted from 1 to 5 by external stretching. Next, the effects of aspect ratio, particle size, flow rate, and poly(ethylene oxide) (PEO) concentration that make the fluid viscoelastic on particle migration were investigated. Finally, we demonstrated the feasibility of our approach by testing channels with an aspect ratio of 3 for the separation of both particles and cells.
Collapse
Affiliation(s)
- Xiaoyue Kang
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| | - Jingtao Ma
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Xiangxun Chen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Hang T Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Fangbao Tian
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Alexander Klimenko
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| | - Dan Yuan
- School of Mechanical and Mining Engineering, University of Queensland, St. Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
2
|
Niu J, Lin S, Xu Y, Tong S, Wang Z, Cui S, Liu Y, Chen D, Cui D. A stepwise multi-stage continuous dielectrophoresis separation microfluidic chip with microfilter structures. Talanta 2024; 279:126585. [PMID: 39053361 DOI: 10.1016/j.talanta.2024.126585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
The separation of target microparticles using microfluidic systems owns extensive applications in biomedical, chemical, and materials science fields. Integration of microfluidic sorting systems employing dielectrophoresis (DEP) technology has been widely investigated. However, enhancing separation efficiency, purity, stability, and integration remains a pressing issue. This study proposes a stepwise multi-stage continuous DEP separation microfluidic chip with a microfilter structure. By leveraging a stepwise electrode configuration, a gradient electric field is generated to drive target microparticles along the electric field gradient, thereby enhancing separation efficiency. Innovative integration of a microfilter structure facilitates simultaneous filtration and improves flow field distribution, thus enhancing system stability. Through the synergistic effect of stepwise electrodes and the microfilter structure, superior coupling of electric and flow fields is achieved, consequently improving the sorting purity, separation efficiency, and system stability of the DEP-based microfluidic sorting system. Validation through simulation and separation of polystyrene microspheres demonstrates the excellent particle separation performance of the proposed system. It evidently shows potential for seamless extension to various biological microparticle sorting applications, harboring significant prospects in the biomedical domain field.
Collapse
Affiliation(s)
- Jiaqi Niu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shujing Lin
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Yichong Xu
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Siyu Tong
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhitao Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengsheng Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yanlei Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Di Chen
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Daxiang Cui
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
3
|
Tevlek A. Diagnostic use of circulating cells and sub-cellular bio-particles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:19-36. [PMID: 39159788 DOI: 10.1016/j.pbiomolbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
In the bloodstream or other physiological fluids, "circulating cells and sub-cellular bio-particles" include many microscopic biological elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, microRNAs, platelets, immune cells, and proteins are the most well-known and investigated. These structures are crucial biomarkers in healthcare and medical research for the early detection of cancer and other disorders, enabling treatment to commence before the onset of clinical symptoms and enhancing the efficacy of treatments. As the size of these biomarkers to be detected decreases and their numbers in body fluids diminishes, the detection materials, ranging from visual inspection to advanced microscopy techniques, begin to become smaller, more sensitive, faster, and more effective, thanks to developing nanotechnology. This review first defines the circulating cells and subcellular bio-particles with their biological, physical, and mechanical properties and second focuses on their diagnostic importance, including their most recent applications as biomarkers, the biosensors that are utilized to detect them, the present obstacles that must be surmounted, and prospective developments in the domain. As technology advances and biomolecular pathways are deepens, diagnostic tests will become more sensitive, specific, and thorough. Finally, integrating recent advances in the diagnostic use of circulating cells and bioparticles into clinical practice is promising for precision medicine and patient outcomes.
Collapse
Affiliation(s)
- Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, 06836, Turkey.
| |
Collapse
|
4
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
5
|
Mudugamuwa A, Roshan U, Hettiarachchi S, Cha H, Musharaf H, Kang X, Trinh QT, Xia HM, Nguyen NT, Zhang J. Periodic Flows in Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404685. [PMID: 39246195 DOI: 10.1002/smll.202404685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time-dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ-on-a-chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Collapse
Affiliation(s)
- Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Hafiz Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Xiaoyue Kang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Huan Ming Xia
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
6
|
Tabarhoseini SM, Kale AS, Koniers PM, Boone AC, Bentor J, Boies A, Zhao H, Xuan X. Charge-Based Separation of Microparticles Using AC Insulator-Based Dielectrophoresis. Anal Chem 2024; 96:13672-13678. [PMID: 39126704 DOI: 10.1021/acs.analchem.4c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Surface charge is an important property of particles. It has been utilized to separate particles in microfluidic devices, where dielectrophoresis (DEP) is often the driving force. However, current DEP-based particle separations based on the charge differences work only for particles of similar sizes. They become less effective and may even fail for a mixture of particles differing in both charge and size. We demonstrate that our recently developed AC insulator-based dielectrophoresis (AC iDEP) technique can direct microparticles toward charge-dependent equilibrium positions in a ratchet microchannel. Such charge-based particle separation is controlled by the imposed AC voltage frequency and amplitude but is nearly unaffected by the size of either type of particle in the mixture except for the time required to achieve an effective separation. This AC iDEP technique may potentially be used to focus and separate submicron or even nanoparticles because of its virtually "infinite" channel length.
Collapse
Affiliation(s)
| | - Akshay Shridhar Kale
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Peter Michael Koniers
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Anna Claire Boone
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Adam Boies
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, United Kingdom
| | - Hui Zhao
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Nevada 89154, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
7
|
Shen S, Liu X, Fan K, Bai H, Li X, Li H. Stabilizing and Accelerating Secondary Flow in Ultralong Spiral Channel for High-Throughput Cell Manipulation. Anal Chem 2024; 96:11412-11421. [PMID: 38954777 DOI: 10.1021/acs.analchem.4c01549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Efficient cell manipulation is essential for numerous applications in bioanalysis and medical diagnosis. However, the lack of stability and strength in the secondary flow, coupled with the narrow range of practical throughput, severely restricts the diverse applications. Herein, we present an innovative inertial microfluidic device that employs a spiral channel for high-throughput cell manipulation. Our investigation demonstrates that the regulation of Dean-like secondary flow in the microchannel can be achieved through geometric confinement. Introducing ordered microstructures into the ultralong spiral channel (>90 cm) stabilizes and accelerates the secondary flow among different loops. Consequently, effective manipulation of blood cells within a wide cell throughput range (1.73 × 108 to 1.16 × 109 cells/min) and cancer cells across a broad throughput range (0.5 × 106 to 5 × 107 cells/min) can be achieved. In comparison to previously reported technologies, our engineering approach of stabilizing and accelerating secondary flow offers specific performance for cell manipulation under a wide range of high-throughput manner. This engineered spiral channel would be promising in biomedical analysis, especially when cells need to be focused efficiently on large-volume liquid samples.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Xufang Liu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Kuohai Fan
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, P. R. China
| | - Hongquan Li
- Shanxi Key Lab for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taiyuan, Shanxi 030000, P. R. China
| |
Collapse
|
8
|
Musharaf HM, Roshan U, Mudugamuwa A, Trinh QT, Zhang J, Nguyen NT. Computational Fluid-Structure Interaction in Microfluidics. MICROMACHINES 2024; 15:897. [PMID: 39064408 PMCID: PMC11278627 DOI: 10.3390/mi15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Collapse
Affiliation(s)
- Hafiz Muhammad Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| |
Collapse
|
9
|
Chu PY, Wu AY, Tsai KY, Hsieh CH, Wu MH. Combination of an Optically Induced Dielectrophoresis (ODEP) Mechanism and a Laminar Flow Pattern in a Microfluidic System for the Continuous Size-Based Sorting and Separation of Microparticles. BIOSENSORS 2024; 14:297. [PMID: 38920601 PMCID: PMC11201910 DOI: 10.3390/bios14060297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Optically induced dielectrophoresis (ODEP)-based microparticle sorting and separation is regarded as promising. However, current methods normally lack the downstream process for the transportation and collection of separated microparticles, which could limit its applications. To address this issue, an ODEP microfluidic chip encompassing three microchannels that join only at the central part of the microchannels (i.e., the working zone) was designed. During operation, three laminar flows were generated in the zone, where two dynamic light bar arrays were designed to sort and separate PS (polystyrene) microbeads of different sizes in a continuous manner. The separated PS microbeads were then continuously transported in laminar flows in a partition manner for the final collection. The results revealed that the method was capable of sorting and separating PS microbeads in a high-purity manner (e.g., the microbead purity values were 89.9 ± 3.7, 88.0 ± 2.5, and 92.8 ± 6.5% for the 5.8, 10.8, and 15.8 μm microbeads harvested, respectively). Overall, this study demonstrated the use of laminar flow and ODEP to achieve size-based sorting, separation, and collection of microparticles in a continuous and high-performance manner. Apart from the demonstration, this method can also be utilized for size-based sorting and the separation of other biological or nonbiological microparticles.
Collapse
Affiliation(s)
- Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Ai-Yun Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Kun-Yu Tsai
- Division of Colon and Rectal Surgery, New Taipei Municipal TuCheng Hospital, New Taipei City 23652, Taiwan
| | - Chia-Hsun Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
- Division of Hematology/Oncology, Department of Internal Medicine, New Taipei Municipal Hospital, New Taipei City 23652, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
10
|
Chai H, Zhu J, Feng Y, Liang F, Wu Q, Ju Z, Huang L, Wang W. Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310212. [PMID: 38236647 DOI: 10.1002/adma.202310212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Indexed: 01/30/2024]
Abstract
Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min-1. It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.
Collapse
Affiliation(s)
- Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiyan Wu
- The First Medical Center of PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhongjian Ju
- The First Medical Center of PLA General Hospital, Beijing, 100853, P. R. China
| | - Liang Huang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Yan S, Liu Y, Nguyen NT, Zhang J. Magnetophoresis-Enhanced Elasto-Inertial Migration of Microparticles and Cells in Microfluidics. Anal Chem 2024; 96:3925-3932. [PMID: 38346322 DOI: 10.1021/acs.analchem.3c05803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Microfluidic particle and cell manipulation techniques possess many potentials for biomedicine and healthcare. Many techniques have been developed based on active (e.g., electrical, magnetic, acoustic, and thermal) force fields and passive hydrodynamic forces (e.g., inertial and elastic lift forces). However, techniques based on a single active or passive manipulating physics cannot always meet the demands, and combining multiple physics becomes a promising strategy to promote technique flexibility and versatility. In this work, we explored the physical coupling of magnetophoresis with the elastic and inertial (i.e., elasto-inertial) lift forces for the manipulation of microparticles. Particle lateral migration was studied in a coflowing configuration of viscoelastic ferrofluid/water (sample/sheath). The particles were suspended in the viscoelastic ferrofluid and confined near the channel sidewall by a sheath flow. The coordination of magnetophoresis and elasto-inertial lift forces promoted the cross-stream migration of particles. Besides, we investigated the effect of the flow rate ratio and total flow rate on the migration of particles. Furthermore, we also investigated the effects of fluid elasticity in sample and sheath flows on particle migration using different combinations of sample and sheath flows, including Newtonian ferrofluid/water, Newtonian ferrofluid/viscoelastic fluid, and viscoelastic ferrofluid/viscoelastic coflows. Experimental results demonstrated and ascertained the promoted particle lateral migration in the PEO-based ferrofluid/water coflow. Finally, we demonstrate the proof-of-concept application of the physical coupling strategy for cell cross-stream migration and solution exchange. We envisage that this novel multiphysical coupling scheme has great potential for the flexible and versatile manipulation of microparticles and cells.
Collapse
Affiliation(s)
- Sheng Yan
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yong Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
12
|
Zhang P, Liu C, Modavi C, Abate A, Chen H. Printhead on a chip: empowering droplet-based bioprinting with microfluidics. Trends Biotechnol 2024; 42:353-368. [PMID: 37777352 DOI: 10.1016/j.tibtech.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/02/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
Droplet-based bioprinting has long struggled with the manipulation and dispensation of individual cells from a printhead, hindering the fabrication of artificial cellular structures with high precision. The integration of modern microfluidic modules into the printhead of a bioprinter is emerging as one approach to overcome this bottleneck. This convergence allows for high-accuracy manipulation and spatial control over placement of cells during printing, and enables the fabrication of cell arrays and hierarchical heterogenous microtissues, opening new applications in bioanalysis and high-throughput screening. In this review, we summarize recent developments in the use of microfluidics in droplet printing systems, with consideration of the working principles; present applications extended through microfluidic features; and discuss the future of this technology.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China.
| | - Congying Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Cyrus Modavi
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Abate
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| |
Collapse
|
13
|
Zhao K, Yao J, Wei Y, Kong D, Wang J. Numerical studies of manipulation and separation of microparticles in ODEP-based microfluidic chips. Electrophoresis 2024. [PMID: 38419136 DOI: 10.1002/elps.202300265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
A novel optical-induced dielectrophoresis (ODEP) method employing a pressure-driven flow for the continuous separation of microparticles is presented in this study. By applying alternate current electric field on conductive indium tin oxide substrate and projecting the light geometry into the photoconductive layer, an inhomogeneous electric field is locally induced. The particles experience the dielectrophoretic force when passing through the lighting area, where the strongest electrical field gradient exists. By optimizing the structure of the lighting pattern, a stronger nonuniform electric field gradient is generated which predicts the separation of 1 and 3 µm polystyrene particles. Moreover, the effects of key parameters, including the light pattern geometry, applied voltage, and flow rate, were investigated in this study, leading to the successful sorting of 700 nm and 1 µm particles. To further examine the separation sensitivity and practicability of the proposed ODEP microfluidic method, the isolation of two different types of circulating tumor cells from T-cells and red blood cells are demonstrated, providing a novel method for the manipulation and separation of microparticles and nanoparticles.
Collapse
Affiliation(s)
- Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Junzhu Yao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Yunman Wei
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Dejian Kong
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| | - Junsheng Wang
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian, P. R. China
- Department of Information Science and Technology, Dalian Maritime University, Dalian, P. R. China
| |
Collapse
|
14
|
Shen S, Zhao L, Bai H, Zhang Y, Niu Y, Tian C, Chan H. Spiral Large-Dimension Microfluidic Channel for Flow-Rate- and Particle-Size-Insensitive Focusing by the Stabilization and Acceleration of Secondary Flow. Anal Chem 2024; 96:1750-1758. [PMID: 38215439 DOI: 10.1021/acs.analchem.3c04897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Inertial microfluidics has demonstrated its ability to focus particles in a passive and straightforward manner. However, achieving flow-rate- and particle-size-insensitive focusing in large-dimension channels with a simple design remains challenging. In this study, we developed a spiral microfluidic with a large-dimension channel to achieve inertial focusing. By designing a unique "big buffering area" and a "small buffering area" in the spiral microchannel, we observed the stabilization and acceleration of secondary flow. Our optimized design allowed for efficient (>99.9%) focusing of 15 μm particles within a wide range of flow rates (0.5-4.5 mL/min) during a long operation duration (0-60 min). Additionally, we achieved effective (>95%) focusing of different-sized particles (7, 10, 15, and 30 μm) and three types of tumor cells (K562, HeLa, and MCF-7) near the inner wall of the 1 mm wide outlet when applying different flow rates (1-3 mL/min). Finally, successful 3D cell focusing was achieved within an optimized device, with the cells positioned at a distance of 50 μm from the wall. Our strategy of stabilizing and accelerating Dean-like secondary flow through the unique configuration of a "big buffering area" and a "small buffering area" proved to be highly effective in achieving inertial focusing that is insensitive to the flow rate and particle size, particularly in large-dimension channels. Consequently, it shows great potential for use in hand-operated microfluidic tools for flow cytometry.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Lei Zhao
- School of Life Science and Technology, Xidian University, Xi'an 710126, Shaanxi, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Yali Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
15
|
Richard C, Vargas-Ordaz EJ, Zhang Y, Li J, Cadarso VJ, Neild A. Acousto-optofluidic 3D single cell imaging of macrophage phagocytosis of Pseudomonas Aeruginosa. LAB ON A CHIP 2024; 24:480-491. [PMID: 38132834 DOI: 10.1039/d3lc00864a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Understanding how immune cells such as monocytes or macrophages within our blood and tissue engulf and destroy foreign organisms is important for developing new therapies. The process undertaken by these cells, called phagocytosis, has yet to be observed in real-time at the single cell level. Microfluidic-based imaging platforms offer a wide range of tools for precise fluid control and biomolecule manipulation that makes regulating long term experiments and data collection possible. With the compatibility between acoustofluidics and light-sheet fluorescent microscopy (LSFM) previously demonstrated, here an acousto-optfluidic device with on-chip fluid flow direction control was developed. The standing surface acoustic waves (SSAWs) were used to trap, load and safeguard individual cells within a highly controllable fluid loop, created via the triggering of on-chip PDMS valves, to demonstrate multiple rounds of live single cell imaging. The valves allowed for the direction of the fluid flow to be changed (between forward and reverse operation) without altering the inlet flow rate, an important factor for performing reproducible and comparable imaging of samples over time. With this high-resolution imaging system, volumetric reconstructions of phagocytosed bacteria within macrophages could be resolved over a total of 9 rounds of imaging: totalling 19 reconstructed images of the cell membrane with visible intracellular bacteria.
Collapse
Affiliation(s)
- Cynthia Richard
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Applied Micro- and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Erick J Vargas-Ordaz
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Applied Micro- and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Yaqi Zhang
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Jian Li
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Victor J Cadarso
- Applied Micro- and Nanotechnology Laboratory, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton 3800, VIC, Australia
| | - Adrian Neild
- Laboratory for Micro Systems, Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
16
|
Duan X, Zheng X, Liu Z, Dong T, Luo Y, Yan W, Wang C, Song C. On-Chip Photoacoustics-Activated Cell Sorting (PA-ACS) for Label-Free and High-Throughput Detection and Screening of Microalgal Cells. Anal Chem 2024; 96:1301-1309. [PMID: 38193144 DOI: 10.1021/acs.analchem.3c04665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Microalgae play a crucial role in global carbon cycling as they convert carbon dioxide into various valuable macromolecules. Among them, Haematococcus pluvialis (H. pluvialis) is the richest natural source of astaxanthin (AXT), which is a valuable antioxidant, anti-inflammatory, and antiapoptosis agent. These benefits make AXT highly commercially valuable in pharmaceuticals, cosmetics, and nutritional industries. However, intrinsic genetic characteristics and extrinsic cultivation conditions influence biomass gains, leading to low productivity and extraction as the main techno-economic bottlenecks in this industry. Thus, detecting AXT in H. pluvialis is essential to determine the influence of multiple parameters on biocompound accumulation, enabling optimization of cultivation and enrichment of AXT-rich H. pluvialis cells. This work developed an opto-acousto-fluidic microplatform for detection, analysis, and sorting of microalgae. Via label-free monitoring and extraction of sample-induced ultrasonic signals, a photoacoustic microscopic system was proposed to provide a full-field visualization of AXT's content and distribution inside H. pluvialis cells. When employed as on-chip image-based flow cytometry, our microplatform can also offer high-throughput measurements of intracellular AXT in real time, which demonstrates similar results to conventional spectrophotometry methods and further reveals the heterogeneity of AXT content at the single-cell level. In addition, a solenoid valve-pump dual-mode cell sorter was integrated for effective sorting of cells with a maximum working frequency of 0.77 Hz, reducing the fluid response time by 50% in rising and 40-fold in recovery. The H. pluvialis cells which have more AXT accumulation (>30 μm in diameter) were 4.38-fold enriched with almost no dead empty and small green cells. According to the results, automated and reliable photoacoustics-activated cell sorting (PA-ACS) can screen AXT-rich cells and remove impurities at the terminal stage of cultivation, thereby increasing the effectiveness and purity of AXT extraction. The proposed system can be further adopted to enrich strains and mutants for the production of biofuels or other rare organic substances such as β-carotene and lutein.
Collapse
Affiliation(s)
- Xiudong Duan
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Xinqi Zheng
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Ziyu Liu
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Tianshu Dong
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Yingdong Luo
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Wei Yan
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Cong Wang
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| | - Chaolong Song
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
17
|
Matsuura K. Editorial for the Special Issue on Microfluidic Device Fabrication and Cell Manipulation. MICROMACHINES 2024; 15:120. [PMID: 38258239 PMCID: PMC10819160 DOI: 10.3390/mi15010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Microfluidic devices have been utilized for separation sciences, environmental sciences, food processing, drug delivery, bioimaging, diagnostics, and cell cultures [...].
Collapse
Affiliation(s)
- Koji Matsuura
- Department of Biosciences, Faculty of Life Science, Okayama University of Science, Okayama 700-0005, Japan
| |
Collapse
|
18
|
Yao Y, Lin Y, Wu Z, Li Z, He X, Wu Y, Sun Z, Ding W, He L. Solute-particle separation in microfluidics enhanced by symmetrical convection. RSC Adv 2024; 14:1729-1740. [PMID: 38192326 PMCID: PMC10772704 DOI: 10.1039/d3ra07285a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024] Open
Abstract
The utilization of microfluidic technology for miniaturized and efficient particle sorting holds significant importance in fields such as biology, chemistry, and healthcare. Passive separation methods, achieved by modifying the geometric shapes of microchannels, enable gentle and straightforward enrichment and separation of particles. Building upon previous discussions regarding the effects of column arrays on fluid flow and particle separation within microchips, we introduced a column array structure into an H-shaped microfluidic chip. It was observed that this structure enhanced mass transfer between two fluids while simultaneously intercepting particles within one fluid, satisfying the requirements for particle interception. This enhancement was primarily achieved by transforming the originally single-mode diffusion-based mass transfer into dual-mode diffusion-convection mass transfer. By further optimizing the column array, it was possible to meet the basic requirements of mass transfer and particle interception with fewer microcolumns, thereby reducing device pressure drop and facilitating the realization of parallel and high-throughput microfluidic devices. These findings have enhanced the potential application of microfluidic systems in clinical and chemical engineering domains.
Collapse
Affiliation(s)
- Yurou Yao
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Yao Lin
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Zerui Wu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| | - Zida Li
- Department of Biomedical Engineering, Medical School, Shenzhen University Shenzhen 518060 China
| | - Xuemei He
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Yun Wu
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Zimin Sun
- Department of Hematology, The First Affiliated Hospital of University of Science and Technology of China Hefei 230001 China
| | - Weiping Ding
- Department of Electronic Engineering and Information Science, University of Science and Technology of China Hefei 230026 China
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
19
|
Shen S, Zhang Y, Yang K, Chan H, Li W, Li X, Tian C, Niu Y. Flow-Rate-Insensitive Plasma Extraction by the Stabilization and Acceleration of Secondary Flow in the Ultralow Aspect Ratio Spiral Channel. Anal Chem 2023; 95:18278-18286. [PMID: 38016025 DOI: 10.1021/acs.analchem.3c04179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Although microfluidic devices have made remarkable strides in blood cell separation, there is still a need for further development and improvement in this area. Herein, we present a novel ultralow aspect ratio (H/W = 1:36) spiral channel microfluidic device with ordered micro-obstacles for sheathless and flow-rate-insensitive blood cell separation. By introducing ordered micro-obstacles into the spiral microchannels, reduced magnitude fluctuations in secondary flow across different loops can be obtained through geometric confinement. As a result, the unique Dean-like secondary flow can effectively enhance the separation efficiency of particles in different sizes ranging from 3 to 15 μm. Compared to most existing microfluidic devices, our system offers several advantages of easy manufacturing, convenient operation, long-term stability, highly efficient performance (up to 99.70% rejection efficiency, including platelets), and most importantly, insensitivity to cell sizes as well as flow rates (allowing for efficient separation of different-sized blood cells in a wide flow rate from 1.00 to 2.50 mL/min). The unique characteristics, such as ultralow aspect ratio, sequential micro-obstacles, and controlled secondary flow, make our device a promising solution for practical plasma extraction in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Yali Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Kai Yang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| |
Collapse
|
20
|
Shen S, Bai H, Wang X, Chan H, Niu Y, Li W, Tian C, Li X. High-Throughput Blood Plasma Extraction in a Dimension-Confined Double-Spiral Channel. Anal Chem 2023; 95:16649-16658. [PMID: 37917001 DOI: 10.1021/acs.analchem.3c03002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Microfluidic technologies enabling the control of secondary flow are essential for the successful separation of blood cells, a process that is beneficial for a wide range of medical research and clinical diagnostics. Herein, we introduce a dimension-confined microfluidic device featuring a double-spiral channel designed to regulate secondary flows, thereby enabling high-throughput isolation of blood for plasma extraction. By integrating a sequence of micro-obstacles within the double-spiral microchannels, the stable and enhanced Dean-like secondary flow across each loop can be generated. This setup consequently prompts particles of varying diameters (3, 7, 10, and 15 μm) to form different focusing states. Crucially, this system is capable of effectively separating blood cells of different sizes with a cell throughput of (2.63-3.36) × 108 cells/min. The concentration of blood cells in outlet 2 increased 3-fold, from 1.46 × 108 to 4.37 × 108, while the number of cells, including platelets, exported from outlets 1 and 3 decreased by a factor of 608. The engineering approach manipulating secondary flow for plasma extraction points to simplicity in fabrication, ease of operation, insensitivity to cell size, high throughput, and separation efficiency, which has potential utility in propelling the development of miniaturized diagnostic devices in the field of biomedical science.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Hanjie Bai
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Xin Wang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Henryk Chan
- Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield S10 2TN, U.K
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taiyuan 030000, Shanxi, P. R. China
| | - Weiwen Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, Anhui, P. R. China
| | - Xiaoping Li
- Department of Breast, Jiangmen Central Hospital, Jiangmen 529000, Guangdong, P. R. China
| |
Collapse
|
21
|
Islam MS, Chen X. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel. Biotechnol Prog 2023; 39:e3341. [PMID: 36970770 DOI: 10.1002/btpr.3341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 08/24/2023]
Abstract
The efficient isolation of viable and intact circulating tumor cells (CTCs) from blood is critical for the genetic analysis of cancer cells, prediction of cancer progression, development of drugs, and evaluation of therapeutic treatments. While conventional cell separation devices utilize the size difference between CTCs and other blood cells, they fail to separate CTCs from white blood cells (WBCs) due to significant size overlap. To overcome this issue, we present a novel approach that combines curved contraction-expansion (CE) channels with dielectrophoresis (DEP) and inertial microfluidics to isolate CTCs from WBCs regardless of size overlap. This label-free and continuous separation method utilizes dielectric properties and size variation of cells for the separation of CTCs from WBCs. The results demonstrate that the proposed hybrid microfluidic channel can effectively isolate A549 CTCs from WBCs regardless of their size with a throughput of 300 μL/min, achieving a high separation distance of 233.4 μm at an applied voltage of 50 Vp-p . The proposed method allows for the modification of cell migration characteristics by controlling the number of CE sections of the channel, applied voltage, applied frequency, and flow rate. With its unique features of a single-stage separation, simple design, and tunability, the proposed method provides a promising alternative to the existing label-free cell separation techniques and may have a wide range of applications in biomedicine.
Collapse
Affiliation(s)
- Md Sadiqul Islam
- School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, Washington, 98686, USA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, Washington, 98686, USA
| |
Collapse
|
22
|
Cha H, Dai Y, Hansen HHWB, Ouyang L, Chen X, Kang X, An H, Ta HT, Nguyen NT, Zhang J. Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel. CYBORG AND BIONIC SYSTEMS 2023; 4:0036. [PMID: 37342212 PMCID: PMC10278993 DOI: 10.34133/cbsystems.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Inertial microfluidics uses the intrinsic fluid inertia in confined channels to manipulate the particles and cells in a simple, high-throughput, and precise manner. Inertial focusing in a straight channel results in several equilibrium positions within the cross sections. Introducing channel curvature and adjusting the cross-sectional aspect ratio and shape can modify inertial focusing positions and can reduce the number of equilibrium positions. In this work, we introduce an innovative way to adjust the inertial focusing and reduce equilibrium positions by embedding asymmetrical obstacle microstructures. We demonstrated that asymmetrical concave obstacles could break the symmetry of original inertial focusing positions, resulting in unilateral focusing. In addition, we characterized the influence of obstacle size and 3 asymmetrical obstacle patterns on unilateral inertial focusing. Finally, we applied differential unilateral focusing on the separation of 10- and 15-μm particles and isolation of brain cancer cells (U87MG) from white blood cells (WBCs), respectively. The results indicated an excellent cancer cell recovery of 96.4% and WBC rejection ratio of 98.81%. After single processing, the purity of the cancer cells was dramatically enhanced from 1.01% to 90.13%, with an 89.24-fold enrichment. We believe that embedding asymmetric concave micro-obstacles is a new strategy to achieve unilateral inertial focusing and separation in curved channels.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Helena H. W. B. Hansen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Xiangxun Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Xiaoyue Kang
- School of Engineering, University of Tasmania, Churchill Avenue, Tasmania 7005, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
23
|
Tao Y, He M, Chen B, Ruan G, Xu P, Xia Y, Song G, Bi Y, Hu B. Evaluation of Cd 2+ stress on Synechocystis sp. PCC6803 based on single-cell elemental accumulation and algal toxicological response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106499. [PMID: 36965429 DOI: 10.1016/j.aquatox.2023.106499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
With the development of single cell analysis techniques, the concept of precision toxicology has been proposed in recent years. Due to the heterogeneity of cells, we need to perform toxicological assessments on individual cells. Microalgae, one kind of important primary producers, play as a major pathway by which heavy metals enter the food chain and thus accumulate/transfer to higher trophic levels. Herein, the biosorption of Cd (Ex-Cd) and bioaccumulation of Cd (In-Cd) for Synechocystis sp. PCC 6803 were investigated by online 3D droplet microfluidic device combined with inductively coupled plasma mass spectrometry detection. Meanwhile, the algal toxicological responses of the algae cell to Cd2+ exposure under different concentration (50, 100, and 150 μg L - 1) and time (15 min, 24, 48 and 96 h) were studied. Combining single-cell analysis with toxicological indicators, the toxicity mechanism of Cd2+to algal was discussed. The single cell analysis results revealed heterogeneity in cellular uptake of Cd2+. The proportion of Cd-containing cells and Cd content in single algal cells all reached the maximum at 24 h. The uptake of Cd2+ occurred within 15 min under all tested exposure concentrations and a large part of Cd2+ were adsorbed on the algal cells surface. The Pearson correlation analysis showed that cell density, chlorophyll a and carotenoids were significantly negatively correlated with Cd accumulation, whereas ROS level and SOD activity were significantly positively correlated with Cd accumulation. It suggested that Cd2+accumulated intracellular would show toxic effects on the algal cells and oxidative stress is the main mechanism of Cd toxicity to algal cells. This work promotes our understanding of the toxicological responses of microalgae under Cd stress at single cells level.
Collapse
Affiliation(s)
- Yao Tao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gang Ruan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yixue Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaofei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
24
|
Shen S, Zhang F, Zhang Y, Li Y, Niu Y, Pang L, Wang J. Construction of multiple concentration gradients for single-cell level drug screening. MICROSYSTEMS & NANOENGINEERING 2023; 9:46. [PMID: 37064165 PMCID: PMC10102073 DOI: 10.1038/s41378-023-00516-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Isolation and manipulation of single cells play a crucial role in drug screening. However, previously reported single-cell drug screening lacked multiple-dose concentration gradient studies, which limits their ability to predict drug performance accurately. To solve this problem, we constructed a multiconcentration gradient generator in which a Tai Chi-spiral mixer can accelerate solution mixing in a short time and produce a linear concentration gradient. Later, a gradient generator combined with a single-cell capture array was adopted to investigate the effects of single or combined doses of 5-fluorouracil and cisplatin on human hepatoma cells and human breast carcinoma cells (at the single-cell level). The results showed that both drugs were effective in inhibiting the growth of cancer cells, and the combination was more effective for human hepatoma cells. In addition, the relationship between the biomechanical heterogeneity (e.g., deformability and size) of tumor cells and potential drug resistance at the single-cell level was investigated, indicating that small and/or deformable cells were more resistant than large and/or less deformable cells. The device provides a simple and reliable platform for studying the optimal dosage of different drug candidates at the single-cell level and effectively screening single-agent chemotherapy regimens and combination therapies.
Collapse
Affiliation(s)
- Shaofei Shen
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801 China
| | - Fangjuan Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801 China
| | - Yali Zhang
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801 China
| | - Yi Li
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801 China
| | - Yanbing Niu
- Shanxi Key Lab for Modernization of TCVM, College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801 China
| | - Long Pang
- School of Basic Medical Science, Xi’an Medical University, Xi’an, Shaanxi 710021 China
| | - Jinyi Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
25
|
Clack K, Soda N, Kasetsirikul S, Mahmudunnabi RG, Nguyen NT, Shiddiky MJA. Toward Personalized Nanomedicine: The Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Analysis in Liquid Biopsy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205856. [PMID: 36631277 DOI: 10.1002/smll.202205856] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Liquid biopsy for the analysis of circulating cancer biomarkers (CBs) is a major advancement toward the early detection of cancer. In comparison to tissue biopsy techniques, liquid biopsy is relatively painless, offering multiple sampling opportunities across easily accessible bodily fluids such as blood, urine, and saliva. Liquid biopsy is also relatively inexpensive and simple, avoiding the requirement for specialized laboratory equipment or trained medical staff. Major advances in the field of liquid biopsy are attributed largely to developments in nanotechnology and microfabrication that enables the creation of highly precise chip-based platforms. These devices can overcome detection limitations of an individual biomarker by detecting multiple markers simultaneously on the same chip, or by featuring integrated and combined target separation techniques. In this review, the major advances in the field of portable and semi-portable micro, nano, and multiplexed platforms for CB detection for the early diagnosis of cancer are highlighted. A comparative discussion is also provided, noting merits and drawbacks of the platforms, especially in terms of portability. Finally, key challenges toward device portability and possible solutions, as well as discussing the future direction of the field are highlighted.
Collapse
Affiliation(s)
- Kimberley Clack
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Surasak Kasetsirikul
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Rabbee G Mahmudunnabi
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD, 4111, Australia
| |
Collapse
|
26
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
27
|
Hettiarachchi S, Cha H, Ouyang L, Mudugamuwa A, An H, Kijanka G, Kashaninejad N, Nguyen NT, Zhang J. Recent microfluidic advances in submicron to nanoparticle manipulation and separation. LAB ON A CHIP 2023; 23:982-1010. [PMID: 36367456 DOI: 10.1039/d2lc00793b] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Manipulation and separation of submicron and nanoparticles are indispensable in many chemical, biological, medical, and environmental applications. Conventional technologies such as ultracentrifugation, ultrafiltration, size exclusion chromatography, precipitation and immunoaffinity capture are limited by high cost, low resolution, low purity or the risk of damage to biological particles. Microfluidics can accurately control fluid flow in channels with dimensions of tens of micrometres. Rapid microfluidics advancement has enabled precise sorting and isolating of nanoparticles with better resolution and efficiency than conventional technologies. This paper comprehensively studies the latest progress in microfluidic technology for submicron and nanoparticle manipulation. We first summarise the principles of the traditional techniques for manipulating nanoparticles. Following the classification of microfluidic techniques as active, passive, and hybrid approaches, we elaborate on the physics, device design, working mechanism and applications of each technique. We also compare the merits and demerits of different microfluidic techniques and benchmark them with conventional technologies. Concurrently, we summarise seven standard post-separation detection techniques for nanoparticles. Finally, we discuss current challenges and future perspectives on microfluidic technology for nanoparticle manipulation and separation.
Collapse
Affiliation(s)
- Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Lingxi Ouyang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | | | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Gregor Kijanka
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
28
|
Cheng Y, Zhang S, Qin L, Zhao J, Song H, Yuan Y, Sun J, Tian F, Liu C. Poly(ethylene oxide) Concentration Gradient-Based Microfluidic Isolation of Circulating Tumor Cells. Anal Chem 2023; 95:3468-3475. [PMID: 36725367 DOI: 10.1021/acs.analchem.2c05257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as promising circulating biomarkers for non-invasive cancer diagnosis and management. Isolation and detection of CTCs in clinical samples are challenging due to the extreme rarity and high heterogeneity of CTCs. Here, we describe a poly(ethylene oxide) (PEO) concentration gradient-based microfluidic method for rapid, label-free, highly efficient isolation of CTCs directly from whole blood samples. Stable concentration gradients of PEO were formed within the microchannel by co-injecting the side fluid (blood sample spiked with 0.025% PEO) and center fluid (0.075% PEO solution). The competition between the elastic lift force and the inertial lift force enabled size-based separation of large CTCs and small blood cells based on their distinct migration patterns. The microfluidic device could process 1 mL of blood sample in 30 min, with a separation efficiency of >90% and an enrichment ratio of >700 for tumor cells. The isolated CTCs from blood samples were enumerated by immunofluorescence staining, allowing for discrimination of breast cancer patients from healthy donors with an accuracy of 84.2%. The concentration gradient-based microfluidic separation provides a powerful tool for label-free isolation of CTCs for a wide range of clinical applications.
Collapse
Affiliation(s)
- Yangchang Cheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Zhang
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Lili Qin
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Junxiang Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Song
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Yang Yuan
- Department of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing 100071, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Design optimization and performance tuning of curved-DC-iDEP particle separation chips. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2022.11.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
31
|
Xiang N, Ni Z. Inertial microfluidics: current status, challenges, and future opportunities. LAB ON A CHIP 2022; 22:4792-4804. [PMID: 36263793 DOI: 10.1039/d2lc00722c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inertial microfluidics uses the hydrodynamic effects induced at finite Reynolds numbers to achieve passive manipulation of particles, cells, or fluids and offers the advantages of high-throughput processing, simple channel geometry, and label-free and external field-free operation. Since its proposal in 2007, inertial microfluidics has attracted increasing interest and is currently widely employed as an important sample preparation protocol for single-cell detection and analysis. Although great success has been achieved in the inertial microfluidics field, its performance and outcome can be further improved. From this perspective, herein, we reviewed the current status, challenges, and opportunities of inertial microfluidics concerning the underlying physical mechanisms, available simulation tools, channel innovation, multistage, multiplexing, or multifunction integration, rapid prototyping, and commercial instrument development. With an improved understanding of the physical mechanisms and the development of novel channels, integration strategies, and commercial instruments, improved inertial microfluidic platforms may represent a new foundation for advancing biomedical research and disease diagnosis.
Collapse
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
32
|
Microfluidics-based single cell analysis: From transcriptomics to spatiotemporal multi-omics. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Recent advances in microfluidic single-cell analysis and its applications in drug development. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Xiang N, Ni Z. Portable Battery-Driven Microfluidic Cell Separation Instrument with Multiple Operational Modes. Anal Chem 2022; 94:16813-16820. [DOI: 10.1021/acs.analchem.2c03833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
35
|
Jiang D, Liu S, Tang W. Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review. MICROMACHINES 2022; 13:1659. [PMID: 36296012 PMCID: PMC9611947 DOI: 10.3390/mi13101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Non-spherical shape is a general appearance feature for bioparticles. Therefore, a mechanical mechanism study of non-spherical particle migration in a microfluidic chip is essential for more precise isolation of target particles. With the manipulation of non-spherical particles, refined disease detection or medical intervention for human beings will be achievable in the future. In this review, fabrication and manipulation of non-spherical particles are discussed. Firstly, various fabrication methods for non-spherical microparticle are introduced. Then, the active and passive manipulation techniques for non-spherical particles are briefly reviewed, including straight inertial microchannels, secondary flow inertial microchannels and deterministic lateral displacement microchannels with extremely high resolution. Finally, applications of viscoelastic flow are presented which obviously increase the precision of non-spherical particle separation. Although various techniques have been employed to improve the performance of non-spherical particle manipulation, the universal mechanism behind this has not been fully discussed. The aim of this review is to provide a reference for non-spherical particle manipulation study researchers in every detail and inspire thoughts for non-spherical particle focused device design.
Collapse
Affiliation(s)
- Di Jiang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Yuyue Medical Equipment and Supply Co., Ltd., Danyang 212300, China
| | - Shaowei Liu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenlai Tang
- School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
36
|
Szymborski TR, Czaplicka M, Nowicka AB, Trzcińska-Danielewicz J, Girstun A, Kamińska A. Dielectrophoresis-Based SERS Sensors for the Detection of Cancer Cells in Microfluidic Chips. BIOSENSORS 2022; 12:681. [PMID: 36140065 PMCID: PMC9496591 DOI: 10.3390/bios12090681] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
The detection of freely circulating cancer cells (CTCs) is one of the greatest challenges of modern medical diagnostics. For several years, there has been increased attention on the use of surface-enhanced Raman spectroscopy (SERS) for the detection of CTCs. SERS is a non-destructive, accurate and precise technique, and the use of special SERS platforms even enables the amplification of weak signals from biological objects. In the current study, we demonstrate the unique arrangement of the SERS technique combined with the deposition of CTCs cells on the surface of the SERS platform via a dielectrophoretic effect. The appropriate frequencies of an alternating electric field and a selected shape of the electric field can result in the efficient deposition of CTCs on the SERS platform. The geometry of the microfluidic chip, the type of the cancer cells and the positive dielectrophoretic phenomenon resulted in the trapping of CTCs on the surface of the SERS platform. We presented results for two type of breast cancer cells, MCF-7 and MDA-MB-231, deposited from the 0.1 PBS solution. The limit of detection (LOD) is 20 cells/mL, which reflects the clinical potential and usefulness of the developed approach. We also provide a proof-of-concept for these CTCs deposited on the SERS platform from blood plasma.
Collapse
Affiliation(s)
- Tomasz R. Szymborski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Czaplicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ariadna B. Nowicka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Joanna Trzcińska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Girstun
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
37
|
Cha H, Fallahi H, Dai Y, Yadav S, Hettiarachchi S, McNamee A, An H, Xiang N, Nguyen NT, Zhang J. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. LAB ON A CHIP 2022; 22:2789-2800. [PMID: 35587546 DOI: 10.1039/d2lc00197g] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inertial microfluidics functions solely based on the fluid dynamics at relatively high flow speed. Thus, channel geometry is the critical design parameter that contributes to the performance of the device. Four basic channel geometries (i.e., straight, expansion-contraction, spiral and serpentine) have been proposed and extensively studied. To further enhance the performance, innovative channel design through combining two or more geometries is promising. This work explores embedding periodic concave and convex obstacle microstructures in sinusoidal channels and investigates their influence on particle inertial focusing and separation. The concave obstacles could significantly enhance the Dean flow and tune the flow range for particle inertial focusing and separation. Based on this finding, we propose a cascaded device by connecting two sinusoidal channels consecutively for rare cell separation. The concave obstacles are embedded in the second channel to adapt its operational flow rates and enable the functional operation of both channels. Polystyrene beads and breast cancer cells (T47D) spiking in the blood were respectively processed by the proposed device. The results indicate an outstanding separation performance, with 3 to 4 orders of magnitude enhancement in purity for samples with a primary cancer cells ratio of 0.01% and 0.001%, respectively. Embedding microstructures as obstacles brings more flexibility to the design of inertial microfluidic devices, offering a feasible new way to combine two or more serial processing units for high-performance separation.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Samith Hettiarachchi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Antony McNamee
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nan Xiang
- School of Mechanical Engineering and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
38
|
Fallahi H, Cha H, Adelnia H, Dai Y, Ta HT, Yadav S, Zhang J, Nguyen NT. On-demand deterministic release of particles and cells using stretchable microfluidics. NANOSCALE HORIZONS 2022; 7:414-424. [PMID: 35237777 DOI: 10.1039/d1nh00679g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microfluidic technologies have been widely used for single-cell studies as they provide facile, cost-effective, and high-throughput evaluations of single cells with great accuracy. Capturing single cells has been investigated extensively using various microfluidic techniques. Furthermore, cell retrieval is crucial for the subsequent study of cells in applications such as drug screening. However, there are no robust methods for the facile release of the captured cells. Therefore, we developed a stretchable microfluidic cell trapper for easy on-demand release of cells in a deterministic manner. The stretchable microdevice consists of several U-shaped microstructures to capture single cells. The gap at the bottom edge of the microstructure broadens when the device is stretched along its width. By tuning the horizontal elongation of the device, ample space is provided to release particle/cell sizes of interest. The performance of the stretchable microdevice was evaluated using particles and cells. A deterministic release of particles was demonstrated using a mixture of 15 μm and 20 μm particles. The retrieval of the 15 μm particles and the 20 μm particles was achieved with elongation lengths of 1 mm and 5 mm, respectively. Two different cell lines, T47D breast cancer cells and J774A.1 macrophages, were employed to characterise the cell release capability of the device. The proposed stretchable micro cell trapper provided a deterministic recovery of the captured cells by adjusting the elongation length of the device. We believe that this stretchable microfluidic platform can provide an alternative method to facilely release trapped cells for subsequent evaluation.
Collapse
Affiliation(s)
- Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hossein Adelnia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|