1
|
Raman Venkatesan T, Owusu F, Nüesch FA, Schulze M, Opris DM. Pyroelectricity in poled all-organic polar polynorbornene/polydimethylsiloxane-based stretchable electrets. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:8408-8417. [PMID: 38882549 PMCID: PMC11170957 DOI: 10.1039/d4tc00791c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024]
Abstract
Pyroelectricity in a recently developed all-organic composite electret with a polar polynorbornene-based filler and polydimethylsiloxane (PDMS) matrix has been studied with the help of thermal and dielectric techniques. Measurement of the pyroelectric p coefficient using a quasi-static periodic temperature variation at RT shows a non-linear dependence with the applied poling field, which is uncharacteristic of amorphous materials. Dielectric relaxation spectroscopy (DRS) and the thermally stimulated depolarization current (TSDC) technique reveal that this behaviour can be attributed to Maxwell-Wagner interface (MWI) polarization that occurs at the filler-matrix interface. These charges released during the onset of dipolar α and β relaxations of the filler particles contribute majorly to the observed pyroelectricity at RT. The saturation of both MWI TSDC shoulders and spontaneous polarization at higher electric fields correlates with the p coefficient value reaching a plateau at these applied fields. A maximum p coefficient of 0.54 μC m-2 K-1 is calculated for a poling field of 30 V μm-1.
Collapse
Affiliation(s)
- Thulasinath Raman Venkatesan
- Laboratory for Functional Polymers, EMPA Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Francis Owusu
- Laboratory for Functional Polymers, EMPA Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL) Station 6 1015 Lausanne Switzerland
| | - Frank A Nüesch
- Laboratory for Functional Polymers, EMPA Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering, Ecole Polytechnique Federale de Lausanne (EPFL) Station 6 1015 Lausanne Switzerland
| | - Manuel Schulze
- Institute of Physics and Astronomy, University of Potsdam Karl-Liebknecht-strasse 24/25 14476 Potsdam Germany
| | - Dorina M Opris
- Laboratory for Functional Polymers, EMPA Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Departments of Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
2
|
Nazarov IV, Bakhtin DS, Gorlov IV, Potapov KV, Borisov IL, Lounev IV, Makarov IS, Volkov AV, Finkelshtein ES, Bermeshev MV. Gas-Transport and the Dielectric Properties of Metathesis Polymer from the Ester of exo-5-Norbornenecarboxylic Acid and 1,1′-Bi-2-naphthol. Polymers (Basel) 2022; 14:polym14132697. [PMID: 35808741 PMCID: PMC9269233 DOI: 10.3390/polym14132697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Polymers from norbornenes are of interest for applications in opto- and microelectronic (low dielectric materials, photoresists, OLEDs). Norbornenes with ester motifs are among the most readily available norbornene derivatives. However, little is known about dielectric properties and the gas-transport of polynorbornenes from such monomers. Herein, we synthesized a new metathesis polymer from exo-5-norbornenecarboxylic acid and 1,1′-bi-2-naphthol. The designed monomer was obtained via a two-step procedure in a good yield. This norbornene derivative with a rigid and a bulky binaphthyl group was successfully polymerized over the 1st generation Grubbs catalyst, affording high-molecular-weight products (Mw ≤ 1.5·106) in yields of 94–98%. The polymer is amorphous and glassy (Tg = 161 °C), and it shows good thermal stability. Unlike most, polyNBi is a classic low-permeable glassy polymer. The selectivity of polyNBi was higher than that of polyNB. Being less permeable than polyNB, polyNBi unexpectedly showed a lower value of dielectric permittivity (2.7 for polyNBi vs. 5.0 for polyNB). Therefore, the molecular design of polynorbornenes has great potential to obtain polymers with desired properties in a wide range of required characteristics. Further tuning of the gas separation efficiency can be achieved by attaching an appropriate substituent to the ester and aryl group.
Collapse
Affiliation(s)
- Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Danila S. Bakhtin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Ilya V. Gorlov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
- Faculty of Fundamental Physical and Chemical Engineering, The Moscow State University, 1 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin V. Potapov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia;
| | - Ilya L. Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Ivan V. Lounev
- Institute of Physics, Kazan Federal University, 18 Kremlyovskaya Street, 420008 Kazan, Russia;
| | - Igor S. Makarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Alexey V. Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Eugene Sh. Finkelshtein
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (I.V.N.); (D.S.B.); (I.V.G.); (I.L.B.); (I.S.M.); (A.V.V.); (E.S.F.)
- Correspondence:
| |
Collapse
|