1
|
Komal, Nanda BP, Singh L, Bhatia R, Singh A. Paclitaxel in colon cancer management: from conventional chemotherapy to advanced nanocarrier delivery systems. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9449-9474. [PMID: 38990305 DOI: 10.1007/s00210-024-03256-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
Paclitaxel, a potent chemotherapeutic agent derived from the bark of the Pacific yew tree, has demonstrated significant efficacy in the treatment of various cancers, including colon cancer. This comprehensive review delves into the conventional treatments for colon cancer, emphasizing the crucial role of paclitaxel in contemporary management strategies. It explores the intricate process of sourcing and synthesizing paclitaxel, highlighting the importance of its structural properties in its anticancer activity. The review further elucidates the mechanism of action of paclitaxel, its pharmacological effects, and its integration into chemotherapy regimens for colon cancer. Additionally, novel drug delivery systems, such as nanocarriers, liposomes, nanoparticles, microspheres, micelles, microemulsions, and niosomes, are examined for their potential to enhance the therapeutic efficacy of paclitaxel. The discussion extends to recent clinical trials and patents, showcasing advancements in paclitaxel formulations aimed at improving treatment outcomes. The review concludes with prospects in the field underscoring the ongoing innovation and potential breakthroughs in colon cancer therapy.
Collapse
Affiliation(s)
- Komal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India
| | - Bibhu Prasad Nanda
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Lovekesh Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amandeep Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, Punjab, 142001, India.
| |
Collapse
|
2
|
Yeniocak S, Karaduman-Yeşildal T, Arslan ME, Toraman GC, Yücetepe A. Effect of In Vitro Digestion on Anticancer and Antioxidant Activity of Phenolic Extracts From Latex of Fig Fruit (Ficus carica L.). Chem Biodivers 2024:e202401624. [PMID: 39590517 DOI: 10.1002/cbdv.202401624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
In this study, changes in total phenolic content (TPC), phenolic profile, and antioxidant activity and anticancer activity against cervix cancer and colorectal cancer cell lines of phenolic extracts of black and white fig (Ficus carica L.) latex (milk) were investigated during in vitro gastrointestinal digestions for the first time. The findings indicated that the in vitro digestion process exerted a significant effect on TPC of the phenolic extract from white fig milk (WFM-PE) and phenolic extract from black fig milk (BFM-PE), and TPC tended to decrease after in vitro digestion (p < 0.05). As consistent with these findings, antioxidant activity (by the CUPRAC method) of the samples decreased (p < 0.05) during in vitro digestion. The IC50 value of the undigested BFM-PE was significantly lower than that of the undigested WFM-PE (p < 0.05). The undigested and the digested WFM-PE and BFM-PE did not show any cytotoxic activity against normal cells. However, anticancer activity of WFM-PE on cervix and colorectal cancer cell lines (p < 0.05) and anticancer activity of BFM-PE against colorectal cancer cell lines decreased after in vitro digestion (p < 0.01). On the other hand, the dominant phenolic was catechin hydrate and was syringic acid.
Collapse
Affiliation(s)
- Salih Yeniocak
- Department of Food Engineering, Faculty of Engineering, Aksaray University, Aksaray, Turkey
| | - Tuğçe Karaduman-Yeşildal
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Mustafa Enes Arslan
- Department of Food Engineering, Faculty of Engineering, Aksaray University, Aksaray, Turkey
| | - Gizem Cansu Toraman
- Department of Food Engineering, Faculty of Engineering, Aksaray University, Aksaray, Turkey
| | - Aysun Yücetepe
- Department of Food Engineering, Faculty of Engineering, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Lin Z, Liu H, Richardson JJ, Xu W, Chen J, Zhou J, Caruso F. Metal-phenolic network composites: from fundamentals to applications. Chem Soc Rev 2024; 53:10800-10826. [PMID: 39364569 DOI: 10.1039/d3cs00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Composites with tailored compositions and functions have attracted widespread scientific and industrial interest. Metal-phenolic networks (MPNs), which are composed of phenolic ligands and metal ions, are amorphous adhesive coordination polymers that have been combined with various functional components to create composites with potential in chemistry, biology, and materials science. This review aims to provide a comprehensive summary of both fundamental knowledge and advancements in the field of MPN composites. The advantages of amorphous MPNs, over crystalline metal-organic frameworks, for fabricating composites are highlighted, including their mild synthesis, diverse interactions, and numerous intrinsic functionalities. The formation mechanisms and state-of-the-art synthesis strategies of MPN composites are summarized to guide their rational design. Subsequently, a detailed overview of the chemical interactions and structure-property relationships of composites based on different functional components (e.g., small molecules, polymers, biomacromolecules) is provided. Finally, perspectives are offered on the current challenges and future directions of MPN composites. This tutorial review is expected to serve as a fundamental guide for researchers in the field of metal-organic materials and to provide insights and avenues to enhance the performance of existing functional materials in applications across diverse fields.
Collapse
Affiliation(s)
- Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Hai Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Joseph J Richardson
- School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jingqu Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
4
|
Ghosh Majumdar A, Pany B, Parua SS, Mukherjee D, Panda A, Mohanty M, Das B, Si S, Mohanty PS. Stimuli-Responsive Nanogel/Microgel Hybrids as Targeted Drug Delivery Systems: A Comprehensive Review. BIONANOSCIENCE 2024; 14:3496-3521. [DOI: 10.1007/s12668-024-01577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 01/06/2025]
|
5
|
Andele PK, Palazzolo S, Corona G, Caligiuri I, Kamensek U, Cemazar M, Canzonieri V, Rizzolio F. Human Omental Mature Adipocytes used as Paclitaxel Reservoir for Cell-Based Therapy in Ovarian Cancer. Adv Healthc Mater 2024; 13:e2304206. [PMID: 38334216 DOI: 10.1002/adhm.202304206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Primary human omental adipocytes and ovarian cancer(OC) cells establish a bidirectional communication in which tumor driven lipolysis is induced in adipocytes and the resulting fatty acids are delivered to cancer cells within the tumor microenvironment. Despite meaningful improvement in the treatment of OC, its efficacy is still limited by hydrophobicity and untargeted effects related to chemotherapeutics. Herein, omental adipocytes are firstly used as a reservoir for paclitaxel, named Living Paclitaxel Bullets (LPB) and secondly benefit from the established dialogue between adipocytes and cancer cells to engineer a drug delivery process that target specifically cancer cells. These results show that mature omental adipocytes can successfully uptake paclitaxel and deliver it to OC cells in a transwell coculture based in vitro model. In addition, the efficacy of this proof-of-concept has been demonstrated in vivo and induces a significant inhibition of tumor growth on a xenograft tumor model. The use of mature adipocytes can be suitable for clinical prospection in a cell-based therapy system, due to their mature and differentiated state, to avoid risks related to uncontrolled cell de novo proliferation capacity after the delivery of the antineoplastic drug as observed with other cell types when employed as drug carriers.
Collapse
Affiliation(s)
- Pacome K Andele
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, 30172, Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| | - Stefano Palazzolo
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, 33081, Italy
| | - Isabella Caligiuri
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Vincenzo Canzonieri
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34127, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, 30172, Italy
- Department of Pathology, IRCCS CRO Aviano National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
6
|
Haque S, Hussain A, Almalki AH, Aldawsari MF, Lal B, Rai AK, Srivastava M, Fiołka M. Prospects of earthworm coelomic fluid as a potential therapeutic agent to treat cancer. Cancer Metastasis Rev 2024; 43:621-637. [PMID: 37910294 DOI: 10.1007/s10555-023-10148-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a major public health concern because it is one of the main causes of morbidity and mortality worldwide. As a result, numerous studies have reported the development of new therapeutic compounds with the aim of selectively treating cancer while having little negative influence on healthy cells. In this context, earthworm coelomic fluid has been acknowledged as a rich source of several bioactive substances that may exhibit promising anticancer activity. Therefore, the objective of the present review is to evaluate the findings of the reported studies exploring the antitumor effects of coelomic fluid in the context of its possible utilization as a natural therapeutic agent to cure different types of cancer. The possible mechanisms underlying the coelomic fluid's anticancerous potential as well as the possibility for future development of cutting-edge therapeutic agents utilizing coelomic fluid-derived natural bioactive compounds to treat cancer disorders have been discussed along with future challenges. In addition, the feasibility of encapsulation of bioactive compounds derived from coelomic fluid with nanomaterials that could be further explored to attain more effective anticancer competence is discussed.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif, 21944, Saudi Arabia
| | - Mohammed F Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Basant Lal
- Department of Chemistry, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
- LCB Fertilizers Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh, 273015, India.
| | - Marta Fiołka
- Department of Immunobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
7
|
Ahmadi M, Ritter CA, von Woedtke T, Bekeschus S, Wende K. Package delivered: folate receptor-mediated transporters in cancer therapy and diagnosis. Chem Sci 2024; 15:1966-2006. [PMID: 38332833 PMCID: PMC10848714 DOI: 10.1039/d3sc05539f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/31/2023] [Indexed: 02/10/2024] Open
Abstract
Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell hallmark, targeted nanocarriers and small molecule-drug conjugates have been developed that comprise different (bio) chemistries and/or mechanical properties with individual advantages and challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and diminished adverse effects. Since the drug transporters' structure-based de novo design is increasingly relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view ultimately guiding future research in FR-targeted cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| | - Christoph A Ritter
- Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald Greifswald Germany
| | - Thomas von Woedtke
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center Ferdinand-Sauerbruch-Straße 17475 Greifswald Germany
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
- Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical Center Strempelstr. 13 18057 Rostock Germany
| | - Kristian Wende
- Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation Competence (ZIK) Plasmatis Felix Hausdorff-Str. 2 17489 Greifswald Germany
| |
Collapse
|
8
|
Sharma A, Singh M, Sharma V, Vashishth A, Raj M, Upadhyay SK, Singh S, Ramniwas S, Dhama K, Sharma AK, Bhatia SK. Current paradigms in employing self-assembled structures: Drug delivery implications with improved therapeutic potential. Colloids Surf B Biointerfaces 2024; 234:113745. [PMID: 38241890 DOI: 10.1016/j.colsurfb.2024.113745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Recent efforts have focused on developing improved drug delivery systems with enhanced therapeutic efficacy and minimal side effects. Micelles, self-assembled from amphiphilic block copolymers in aqueous solutions, have gained considerable attention for drug delivery. However, there is a need to further enhance their efficiency. These micelles offer benefits like biodegradability, biocompatibility, sustained drug release, and improved patient compliance. Yet, researchers must address stability issues and reduce toxicity. Nanoscale self-assembled structures have shown promise as efficient drug carriers, offering an alternative to conventional methods. Fine-tuning at the monomeric and molecular levels, along with structural modifications, is crucial for optimal drug release profiles. Various strategies, such as entrapping hydrophobic drugs and using polyethylene oxide diblock copolymer micelles to resist protein adsorption and cellular adhesion, protect the hydrophobic core from degradation. The polyethylene oxide corona also provides stealth properties, prolonging blood circulation for extended drug administration. Amphiphilic copolymers are attractive for drug delivery due to their adjustable properties, allowing control over micelle size and morphology. Emerging tools promise complex and multifunctional platforms. This article summarizes about the challenges as far as the use of micelles is concerned, including optimizing performance, rigorous pre-clinical and clinical research, and suggests further improvement for drug delivery efficacy.
Collapse
Affiliation(s)
- Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India.
| | - Manoj Singh
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh 160019, India.
| | - Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology (Deemed to be University) Delhi-NCR Campus, Ghaziabad, UP 201204, India.
| | - Mayank Raj
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sushil K Upadhyay
- Department of Bio-sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sandeep Singh
- Department of Chemistry, Sri Guru Gobind Singh College, Sector -26, Chandigarh, India.
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Biotechnology Chandigarh University, Gharuan, Mohali, India.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, UP, India.
| | - Anil K Sharma
- Department of Biotechnology, Amity University, Sector 82 A, IT City Rd, Block D, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Shashi Kant Bhatia
- Biotransformation and Biomaterials Lab, Department of Biological Engineering, College of Engineering, KonkukUniversity, Hwayang-dong Gwangjin-gu, Seoul 05029, South Korea.
| |
Collapse
|
9
|
Raza F, Zafar H, Jiang L, Su J, Yuan W, Qiu M, Paiva-Santos AC. Progress of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. Biomater Sci 2023; 12:57-91. [PMID: 37902579 DOI: 10.1039/d3bm01170d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In recent years, considerable attention has been given to phototherapy, including photothermal and photodynamic therapy to kill tumor cells by producing heat or reactive oxygen species (ROS). It has the high merits of noninvasiveness and limited drug resistance. To fully utilize this therapy, an extraordinary nanovehicle is required to target phototherapeutic agents in the tumor cells. Nanovesicles embody an ideal strategy for drug delivery applications. Cell membrane-derived biomimetic nanovesicles represent a developing type of nanocarrier. Combining this technique with cancer phototherapy could enable a novel strategy. Herein, efforts are made to describe a comprehensive overview of cell membrane-derived biomimetic nanovesicles for cancer phototherapy. The description in this review is mainly based on representative examples of exosome-derived biomimetic nanomedicine research, ranging from their comparison with traditional nanocarriers to extensive applications in cancer phototherapy. Additionally, the challenges and future prospectives for translating these for clinical application are discussed.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Liangdi Jiang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Weien Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
- LAQV, REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
10
|
Gimondi S, Ferreira H, Reis RL, Neves NM. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation. ACS NANO 2023; 17:14205-14228. [PMID: 37498731 PMCID: PMC10416572 DOI: 10.1021/acsnano.3c01117] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
The use of nanoparticles (NPs) in nanomedicine holds great promise for the treatment of diseases for which conventional therapies present serious limitations. Additionally, NPs can drastically improve early diagnosis and follow-up of many disorders. However, to harness their full capabilities, they must be precisely designed, produced, and tested in relevant models. Microfluidic systems can simulate dynamic fluid flows, gradients, specific microenvironments, and multiorgan complexes, providing an efficient and cost-effective approach for both NPs synthesis and screening. Microfluidic technologies allow for the synthesis of NPs under controlled conditions, enhancing batch-to-batch reproducibility. Moreover, due to the versatility of microfluidic devices, it is possible to generate and customize endless platforms for rapid and efficient in vitro and in vivo screening of NPs' performance. Indeed, microfluidic devices show great potential as advanced systems for small organism manipulation and immobilization. In this review, first we summarize the major microfluidic platforms that allow for controlled NPs synthesis. Next, we will discuss the most innovative microfluidic platforms that enable mimicking in vitro environments as well as give insights into organism-on-a-chip and their promising application for NPs screening. We conclude this review with a critical assessment of the current challenges and possible future directions of microfluidic systems in NPs synthesis and screening to impact the field of nanomedicine.
Collapse
Affiliation(s)
- Sara Gimondi
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| | - Nuno M. Neves
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters
of the European Institute of Excellence on Tissue Engineering and
Regenerative Medicine, AvePark, Parque
de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s−PT
Government Associate Laboratory, 4805-017 Braga, Guimarães, Portugal
| |
Collapse
|
11
|
Hosseini F, Mirzaei Chegeni M, Bidaki A, Zaer M, Abolhassani H, Seyedi SA, Nabipoorashrafi SA, Ashrafnia Menarbazari A, Moeinzadeh A, Farmani AR, Tavakkoli Yaraki M. 3D-printing-assisted synthesis of paclitaxel-loaded niosomes functionalized by cross-linked gelatin/alginate composite: Large-scale synthesis and in-vitro anti-cancer evaluation. Int J Biol Macromol 2023; 242:124697. [PMID: 37156313 DOI: 10.1016/j.ijbiomac.2023.124697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Breast cancer is one of the most lethal cancers, especially in women. Despite many efforts, side effects of anti-cancer drugs and metastasis are still the main challenges in breast cancer treatment. Recently, advanced technologies such as 3D-printing and nanotechnology have created new horizons in cancer treatment. In this work, we report an advanced drug delivery system based on 3D-printed gelatin-alginate scaffolds containing paclitaxel-loaded niosomes (Nio-PTX@GT-AL). The morphology, drug release, degradation, cellular uptake, flow cytometry, cell cytotoxicity, migration, gene expression, and caspase activity of scaffolds, and control samples (Nio-PTX, and Free-PTX) were investigated. Results demonstrated that synthesized niosomes had spherical-like, in the range of 60-80 nm with desirable cellular uptake. Nio-PTX@GT-AL and Nio-PTX had a sustained drug release and were biodegradable. Cytotoxicity studies revealed that the designed Nio-PTX@GT-AL scaffold had <5 % cytotoxicity against non-tumorigenic breast cell line (MCF-10A) but showed 80 % cytotoxicity against breast cancer cells (MCF-7), which was considerably more than the anti-cancer effects of control samples. In migration evaluation (scratch-assay), approximately 70 % reduction of covered surface area was observed. The anticancer effect of the designed nanocarrier could be attributed to gene expression regulation, where a significant increase in the expression and activity of genes promoting apoptosis (CASP-3, CASP-8, and CASP-9) and inhibiting metastasis (Bax, and p53) and a remarkable decrease in metastasis-enhancing genes (Bcl2, MMP-2, and MMP-9) were observed. Also, flow cytometry results declared that Nio-PTX@GT-AL reduced necrosis and increased apoptosis considerably. The results of this study prove that employing 3D-printing and niosomal formulation is an effective approach in designing nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Fatemeh Hosseini
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Ali Bidaki
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | | | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
12
|
Leng Q, Imtiyaz Z, Woodle MC, Mixson AJ. Delivery of Chemotherapy Agents and Nucleic Acids with pH-Dependent Nanoparticles. Pharmaceutics 2023; 15:1482. [PMID: 37242725 PMCID: PMC10222096 DOI: 10.3390/pharmaceutics15051482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
With less than one percent of systemically injected nanoparticles accumulating in tumors, several novel approaches have been spurred to direct and release the therapy in or near tumors. One such approach depends on the acidic pH of the extracellular matrix and endosomes of the tumor. With an average pH of 6.8, the extracellular tumor matrix provides a gradient for pH-responsive particles to accumulate, enabling greater specificity. Upon uptake by tumor cells, nanoparticles are further exposed to lower pHs, reaching a pH of 5 in late endosomes. Based on these two acidic environments in the tumor, various pH-dependent targeting strategies have been employed to release chemotherapy or the combination of chemotherapy and nucleic acids from macromolecules such as the keratin protein or polymeric nanoparticles. We will review these release strategies, including pH-sensitive linkages between the carrier and hydrophobic chemotherapy agent, the protonation and disruption of polymeric nanoparticles, an amalgam of these first two approaches, and the release of polymers shielding drug-loaded nanoparticles. While several pH-sensitive strategies have demonstrated marked antitumor efficacy in preclinical trials, many studies are early in their development with several obstacles that may limit their clinical use.
Collapse
Affiliation(s)
- Qixin Leng
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | - Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, University of Maryland, 10 S. Pine St., Baltimore, MD 21201, USA (Z.I.)
| |
Collapse
|
13
|
Khalid HB, Rasul A, Shah S, Abbas G, Mahmood A. Disulfide Bridged Nanoparticles of Thiolated Sodium Alginate and Eudragit RS100 for Oral Delivery of Paclitaxel: In Vitro and In Vivo Evaluation. ACS OMEGA 2023; 8:9662-9672. [PMID: 36936332 PMCID: PMC10018692 DOI: 10.1021/acsomega.3c00400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Most biopharmaceutics classification system (BCS) class IV drugs have limited oral bioavailability due to poor solubility and poorer permeability. This work aims to investigate the possibility of utilizing disulfide bridged nanoparticles to improve BCS IV drug solubility and oral absorption. Disulfide bridged nanoparticles were made using thiolated sodium alginate (TSA) and thiolated eudragit RS100 (TERS100). This study used paclitaxel (PTL) as a model drug to create PTL-loaded nanoparticles using the air oxidation approach. PTL-loaded nanoparticles boosted the solubility of PTL by over 11 times (∼59 μg/mL). The nanoparticles had particle sizes of 103 nm, polydispersity indices of 0.034, and zeta potentials of -21 mV, respectively. Nanoparticles demonstrated 75.34% and 89.18% entrapment and loading efficiency of PTL, respectively. The PTL release data from nanoparticles had good sustained release properties. The effective permeability of PTL from nanoparticles was 2.19-fold higher than that of pure PTL suspension. The relative bioavailability of PTL with disulfide bridged nanoparticles was 237.11%, which was much higher than that of PTL suspension, according to the pharmacokinetic data. These results show that disulfide bridged nanoparticles have a wide range of clinical applications.
Collapse
Affiliation(s)
- Hafiz
Muhammad Bilal Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Akhtar Rasul
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Shahid Shah
- Department
of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Ghulam Abbas
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| | - Abid Mahmood
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38040, Pakistan
| |
Collapse
|
14
|
Pulmonary delivery of curcumin and quercetin nanoparticles for lung cancer – Part 2: Toxicity and endocytosis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
15
|
Transcytosable Peptide-Paclitaxel Prodrug Nanoparticle for Targeted Treatment of Triple-Negative Breast Cancer. Int J Mol Sci 2023; 24:ijms24054646. [PMID: 36902076 PMCID: PMC10003159 DOI: 10.3390/ijms24054646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an extremely aggressive subtype associated with a poor prognosis. At present, the treatment for TNBC mainly relies on surgery and traditional chemotherapy. As a key component in the standard treatment of TNBC, paclitaxel (PTX) effectively inhibits the growth and proliferation of tumor cells. However, the application of PTX in clinical treatment is limited due to its inherent hydrophobicity, weak penetrability, nonspecific accumulation, and side effects. To counter these problems, we constructed a novel PTX conjugate based on the peptide-drug conjugates (PDCs) strategy. In this PTX conjugate, a novel fused peptide TAR consisting of a tumor-targeting peptide, A7R, and a cell-penetrating peptide, TAT, is used to modify PTX. After modification, this conjugate is named PTX-SM-TAR, which is expected to improve the specificity and penetrability of PTX at the tumor site. Depending on hydrophilic TAR peptide and hydrophobic PTX, PTX-SM-TAR can self-assemble into nanoparticles and improve the water solubility of PTX. In terms of linkage, the acid- and esterase-sensitive ester bond was used as the linking bond, with which PTX-SM-TAR NPs could remain stable in the physiological environment, whereas PTX-SM-TAR NPs could be broken and PTX be released at the tumor site. A cell uptake assay showed that PTX-SM-TAR NPs were receptor-targeting and could mediate endocytosis by binding to NRP-1. The vascular barrier, transcellular migration, and tumor spheroids experiments showed that PTX-SM-TAR NPs exhibit great transvascular transport and tumor penetration ability. In vivo experiments, PTX-SM-TAR NPs showed higher antitumor effects than PTX. As a result, PTX-SM-TAR NPs may overcome the shortcomings of PTX and present a new transcytosable and targeted delivery system for PTX in TNBC treatment.
Collapse
|
16
|
Aptamer Tethered Bio-Responsive Mesoporous Silica Nanoparticles for Efficient Targeted Delivery of Paclitaxel to Treat Ovarian Cancer Cells. J Pharm Sci 2023; 112:1450-1459. [PMID: 36669561 DOI: 10.1016/j.xphs.2023.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Ovarian cancer is the leading cause of cancer deaths in female patients. The current therapeutics in ovarian cancer are limited and inefficient in curing the disease. To tackle this, we have synthesized tetrasulfide derivative of silica doped, biodegradable, glutathione-responsive targeted mesoporous silica nanoparticles modified with heterobifunctional polyethylene glycol as a linker and mucin-1 aptamer for triggered paclitaxel delivery to the ovarian cancer cells. Degradable mesoporous silica nanoparticles were synthesized by a modified sol-gel method with tetraethyl orthosilicate and Bis (triethoxysilylpropyl) tetrasulfide. The degradable mesoporous silica nanoparticles were characterized by dynamic light scattering, Fourier-transform infrared spectroscopy, Scanning electron microscopy and Transmission electron microscopy. The degradable mesoporous silica nanoparticles had good paclitaxel encapsulation efficiency and glutathione-responsive paclitaxel release ability. The glutathione utilization assay and visual destruction observed within 10 days in transmission electron microscopy images confirmed the degradation of the mesoporous silica nanoparticles in the tumor cell environment. The targeted degradable mesoporous silica nanoparticles were efficiently taken up by ovarian cancer cell lines OVACAR-3 and PA-1. The cytotoxicity of bare mesoporous silica nanoparticles evaluated on NIH-3T3 cell line showed good biocompatibility (>90% cell viability). Significant toxicity on OVACAR-3 (IC50 25.66 nM) and PA-1 (IC50 42.93 nM) cell lines was observed when treated with paclitaxel-loaded targeted degradable mesoporous silica nanoparticles. Results of this study demonstrated that mucin-1 targeted, glutathione-responsive mesoporous silica nanoparticles loaded with paclitaxel had a significant antitumor effect on ovarian cancer cells. All these findings demonstrated that developed nano-formulation could be suitable for ovarian cancer treatment.
Collapse
|
17
|
PLGA-Lipid Hybrid Nanoparticles for Overcoming Paclitaxel Tolerance in Anoikis-Resistant Lung Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238295. [PMID: 36500387 PMCID: PMC9737185 DOI: 10.3390/molecules27238295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Drug resistance and metastasis are two major obstacles to cancer chemotherapy. During metastasis, cancer cells can survive as floating cells in the blood or lymphatic circulatory system, due to the acquisition of resistance to anoikis-a programmed cell death activated by loss of extracellular matrix attachment. The anoikis-resistant lung cancer cells also develop drug resistance. In this study, paclitaxel-encapsulated PLGA-lipid hybrid nanoparticles (PLHNPs) were formulated by nanoprecipitation combined with self-assembly. The paclitaxel-PLHNPs had an average particle size of 103.0 ± 1.6 nm and a zeta potential value of -52.9 mV with the monodisperse distribution. Cytotoxicity of the nanoparticles was evaluated in A549 human lung cancer cells cultivated as floating cells under non-adherent conditions, compared with A549 attached cells. The floating cells exhibited anoikis resistance as shown by a lack of caspase-3 activation, in contrast to floating normal epithelial cells. Paclitaxel tolerance was evident in floating cells which had an IC50 value of 418.56 nM, compared to an IC50 value of 7.88 nM for attached cells. Paclitaxel-PLHNPs significantly reduced the IC50 values in both attached cells (IC50 value of 0.11 nM, 71.6-fold decrease) and floating cells (IC50 value of 1.13 nM, 370.4-fold decrease). This report demonstrated the potential of PLHNPs to improve the efficacy of the chemotherapeutic drug paclitaxel, for eradicating anoikis-resistant lung cancer cells during metastasis.
Collapse
|
18
|
Nano-Clays for Cancer Therapy: State-of-the Art and Future Perspectives. J Pers Med 2022; 12:jpm12101736. [PMID: 36294875 PMCID: PMC9605470 DOI: 10.3390/jpm12101736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
To date, cancer continues to be one of the deadliest diseases. Current therapies are often ineffective, leading to the urgency to develop new therapeutic strategies to improve treatments. Conventional chemotherapeutics are characterized by a reduced therapeutic efficacy, as well as them being responsible for important undesirable side effects linked to their non-specific toxicity. In this context, natural nanomaterials such as clayey mineral nanostructures of various shapes (flat, tubular, spherical and fibrous) with adjustable physico-chemical and morphological characteristics are emerging as systems with extraordinary potential for the delivery of different therapeutic agents to tumor sites. Thanks to their submicron size, high specific surface area, high adsorption capacity, chemical inertia and multilayer organization of 0.7 to 1 nm-thick sheets, they have aroused considerable interest among the scientific community as nano systems that are highly biocompatible in cancer therapy. In oncology, the nano-clays usually studied are halloysite, bentonite, laponite, kaolinite, montmorillonite and sepiolite. These are multilayered minerals that can act as nanocarriers (with a drug load generally between 1 and 10% by weight) for improved stabilization, efficient transport and the sustained and controlled release of a wide variety of anticancer agents. In particular, halloysite, montmorillonite and kaolinite are used to improve the dissolution of therapeutic agents and to delay and/or direct their release. In this review, we will examine and expose to the scientific community the extraordinary potential of nano-clays as unique crystalline systems in the treatment of cancer.
Collapse
|
19
|
Bai YT, Zhang XQ, Chen XJ, Zhou G. Nanomedicines in oral cancer: inspiration comes from extracellular vesicles and biomimetic nanoparticles. Nanomedicine (Lond) 2022; 17:1761-1778. [PMID: 36647844 DOI: 10.2217/nnm-2022-0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Oral cancer is a common life-threatening malignancy having high mortality and morbidity rates. During the treatment process, individuals unavoidably experience severe side effects. It is essential to develop safer and more effective strategies. Currently, extracellular vesicles (EVs) and biomimetic nanoparticles are nanomedicines with long-term blood circulation and lower off-target toxicity that orchestrate immune responses and accumulate specifically in tumor sites. EVs create a synergetic effect by encapsulating drugs and collaborating with naturally loaded elements in the EVs. Biomimetic nanoparticles retain the characteristic features of the synthetic nanocarriers and inherit the intrinsic cell membrane functionalities. This review outlines the properties, applications, challenges, pros and cons of EVs and biomimetic nanoparticles, providing novel perspectives on oral cancer.
Collapse
Affiliation(s)
- Yu-Ting Bai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xue-Qiong Zhang
- School of Chemistry, Chemical Engineering & Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiao-Jie Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.,Department of Oral Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
20
|
Rasel MSI, Mohona FA, Akter W, Kabir S, Chowdhury AA, Chowdhury JA, Hassan MA, Al Mamun A, Ghose DK, Ahmad Z, Khan FS, Bari MF, Rahman MS, Amran MS. Exploration of Site-Specific Drug Targeting-A Review on EPR-, Stimuli-, Chemical-, and Receptor-Based Approaches as Potential Drug Targeting Methods in Cancer Treatment. JOURNAL OF ONCOLOGY 2022; 2022:9396760. [PMID: 36284633 PMCID: PMC9588330 DOI: 10.1155/2022/9396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Cancer has been one of the most dominant causes of mortality globally over the last few decades. In cancer treatment, the selective targeting of tumor cells is indispensable, making it a better replacement for conventional chemotherapies by diminishing their adverse side effects. While designing a drug to be delivered selectively in the target organ, the drug development scientists should focus on various factors such as the type of cancer they are dealing with according to which drug, targeting moieties, and pharmaceutical carriers should be targeted. All published articles have been collected regarding cancer and drug-targeting approaches from well reputed databases including MEDLINE, Embase, Cochrane Library, CENTRAL and ClinicalTrials.gov, Science Direct, PubMed, Scopus, Wiley, and Springer. The articles published between January 2010 and December 2020 were considered. Due to the existence of various mechanisms, it is challenging to choose which one is appropriate for a specific case. Moreover, a combination of more than one approach is often utilized to achieve optimal drug effects. In this review, we have summarized and highlighted central mechanisms of how the targeted drug delivery system works in the specific diseased microenvironment, along with the strategies to make an approach more effective. We have also included some pictorial illustrations to have a precise idea about different types of drug targeting. The core contribution of this work includes providing a cancer drug development scientist with a broad preliminary idea to choose the appropriate approach among the various targeted drug delivery mechanisms. Also, the study will contribute to improving anticancer treatment approaches by providing a pathway for lesser side effects observed in conventional chemotherapeutic techniques.
Collapse
Affiliation(s)
- Md. Shamiul Islam Rasel
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Farhana Afrin Mohona
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Wahida Akter
- College of Pharmacy, University of Houston, Houston, USA
| | - Shaila Kabir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Abu Asad Chowdhury
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Jakir Ahmed Chowdhury
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| | - Md. Abul Hassan
- Department of Science & Technology, Tokushima University Graduate School, Tokushima, Japan
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang, China
| | - Dipayon Krisna Ghose
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Department of Biology, College of Arts and Sciences, King Khalid University, Abha 61413, Saudi Arabia
| | - Md. Fazlul Bari
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh
| |
Collapse
|
21
|
Zheng C, Wang L, Gao C. pH-sensitive bovine serum albumin nanoparticles for paclitaxel delivery and controlled release to cervical cancer. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Wang J, He Y, Zhang B, Lv H, Nie C, Chen B, Xu W, Zhao J, Cheng X, Li Q, Tu S, Chen X. The Efficacy and Safety of Sintilimab Combined With Nab-Paclitaxel as a Second-Line Treatment for Advanced or Metastatic Gastric Cancer and Gastroesophageal Junction Cancer. Front Oncol 2022; 12:924149. [PMID: 35719979 PMCID: PMC9198424 DOI: 10.3389/fonc.2022.924149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022] Open
Abstract
Background Unresectable advanced or recurrent gastric cancer patients have a poor prognosis. PD-1 monotherapy regimen and PD-1 combined chemotherapy regimen have become the standard third- and first-line treatment for advanced gastric cancer, respectively. However, the status of immune checkpoint inhibitors in the second-line treatment for advanced gastric cancer has not been established. The combination of chemotherapy and anti-PD-1 antibody has been demonstrated to have a synergistic effect. In this study, we aimed to evaluate the efficacy and safety of sintilimab combined with nab-paclitaxel in the second-line treatment for advanced gastric cancer (GC)/gastroesophageal junction (GEJ) cancer patients. Patients and Methods We retrospectively analyzed patients with advanced GC/GEJ cancer that progressed after first-line systemic therapies with sintilimab combined with nab-paclitaxel from April 1, 2019 to December 31, 2021. The primary endpoint was progression-free survival (PFS). The secondary endpoints included objective response rate (ORR), disease control rate (DCR), and safety. Results Thirty-nine patients were enrolled and eligible for response assessment. Complete response (CR) was not observed, 15 patients achieved partial response (PR), 16 patients had stable disease (SD) and 9 patients had progressive disease (PD). The ORR and DCR were 15 (38.5%) and 31 (79.5%), respectively. Median PFS was 5.4 months (95%CI: 3.072-7.728). PFSs between different subgroups were analyzed. The results showed that gender, age, Human epidermal growth factor receptors 2 (HER2) status, PD-L1 expression, primary tumor site and chemotherapy cycles had no significant effect on PFS. Most of the adverse events (AEs) were of grade 1-2 and manageable. The common treatment-related adverse events of grade 3 or 4 included anemia (12.8%), neutropenia (12.8%), leukopenia (10.3%), hand-foot syndrome (7.7%), thrombocytopenia (7.7%). The potential immune-related adverse events (irAEs) were grade 1 pneumonia (1 pts [2.6%]) and grade 4 hepatitis (1 pts [2.6%]). There were no treatment-related deaths. Conclusion These results indicate that sintilimab combined with nab-paclitaxel exhibits good anti-tumor activity and an acceptable safety profile as a second-line treatment for advanced or metastatic gastric cancer. These results warrant further investigation and evaluation to identify patients who can benefit more from the combined treatment strategy.
Collapse
Affiliation(s)
- Jianzheng Wang
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| | - Yunduan He
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| | - Baiwen Zhang
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huifang Lv
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| | - Caiyun Nie
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| | - Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| | - Jing Zhao
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| | - Xiaojiao Cheng
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qingli Li
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuiping Tu
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaobing Chen
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou, University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|