1
|
Voráčová M, Yli-Kauhaluoma J, Kiuru P. The key phosphorus moieties in drug design: antimicrobials and beyond. Future Med Chem 2024; 16:2455-2458. [PMID: 39560019 PMCID: PMC11622798 DOI: 10.1080/17568919.2024.2423602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00790, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00790, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00790, Finland
| |
Collapse
|
2
|
Ho TS, Chan AHY, Leeper FJ. Triazole-Based Thiamine Analogues as Inhibitors of Thiamine Pyrophosphate-Dependent Enzymes: 1,3-Dicarboxylate for Metal Binding. ACS OMEGA 2024; 9:42245-42252. [PMID: 39431096 PMCID: PMC11483378 DOI: 10.1021/acsomega.4c04594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024]
Abstract
Thiamine 1 (vitamin B1) is essential for energy metabolism, and interruption of its utilization pathways is linked to various disease states. Thiamine pyrophosphate 2a (TPP, the bioactive form of 1) functions as a coenzyme of a variety of enzymes. To understand the role of vitamin B1 in these diseases, a chemical approach is to use coenzyme analogues to compete with TPP for the enzyme active site, which abolishes the coenzyme function. Exemplified by oxythiamine 3a and triazole hydroxamate 4, chemical probes require the coenzyme analogues to be membrane-permeable and of broad inhibitory activity to the enzyme family (rather than being too selective to particular TPP-dependent enzymes). In this study, using biochemical assays, we show that changing the hydroxamate metal-binding group of 4 to a 1,3-dicarboxylate moiety leads to the potent inhibition of multiple TPP-dependent enzymes. We further demonstrate that this dianionic thiamine analogue when masked in its diester form becomes membrane-permeable and can be unmasked by esterase treatment. Taken together, our inhibitors are potentially useful chemical tools to study the roles of vitamin B1, using a prodrug mechanism, to induce the effects of thiamine deficiency in cell-based assays.
Collapse
Affiliation(s)
| | | | - Finian J. Leeper
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Farrell RE, Steele H, Middleton RJ, Skropeta D, Liu GJ. Cytotoxicity of phosphoramidate, bis-amidate and cycloSal prodrug metabolites against tumour and normal cells. RSC Med Chem 2024; 15:1973-1981. [PMID: 38903945 PMCID: PMC11109934 DOI: 10.1039/d4md00115j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 06/22/2024] Open
Abstract
Phosphonate and phosphate prodrugs are integral to enhancing drug permeability, but the potential toxicity of their metabolites requires careful consideration. This study evaluates the impact of widely used phosphoramidate, bis-amidate, and cycloSal phosph(on)ate prodrug metabolites on BxPC3 pancreatic cancer cells, GL261-Luc glioblastoma cells, and primary cultured mouse astrocytes. 1-Naphthol and 2-naphthol demonstrated the greatest toxicity. Notably, 2-naphthol exhibited an ED50 of 21 μM on BxPC3 cells, surpassing 1-naphthol with an ED50 of 82 μM. Real-time xCELLigence experiments revealed notable activity for both metabolites at a low concentration of 16 μM. On primary cultured mouse astrocyte cells, all prodrugs exhibited reduced viability at 128 to 256 μM after only 4 hours of exposure. A cell-type-dependent sensitivity to phosph(on)ate prodrug metabolites was evident, with normal cells showing greater susceptibility than corresponding tumour cells. The results suggest it is essential to consider the potential cytotoxicity of phosph(on)ate prodrugs in the drug design and evaluation process.
Collapse
Affiliation(s)
- Rebecca E Farrell
- School of Chemistry & Molecular Bioscience and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong Wollongong NSW 2522 Australia
| | - Harrison Steele
- School of Chemistry & Molecular Bioscience and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong Wollongong NSW 2522 Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia
| | - Danielle Skropeta
- School of Chemistry & Molecular Bioscience and Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong Wollongong NSW 2522 Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW 2234 Australia
- Discipline of Medical Imaging Sciences, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney Sydney NSW 2050 Australia
| |
Collapse
|
4
|
Descamps A, Arnoux P, Frochot C, Barbault F, Deschamp J, Monteil M, Migianu-Griffoni E, Legigan T, Lecouvey M. Synthesis and preliminary anticancer evaluation of photo-responsive prodrugs of hydroxymethylene bisphosphonate alendronate. Eur J Med Chem 2024; 269:116307. [PMID: 38460269 DOI: 10.1016/j.ejmech.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The antitumoral activity of hydroxymethylene bisphosphonates (HMBP) such as alendronate or zoledronate is hampered by their exceptional bone-binding properties and their short plasmatic half-life which preclude their accumulation in non-skeletal tumors. In this context, the use of lipophilic prodrugs represents a simple and straightforward strategy to enhance the biodistribution of bisphosphonates in these tissues. We describe in this article the synthesis of light-responsive prodrugs of HMBP alendronate. These prodrugs include lipophilic photo-removable nitroveratryl groups which partially mask the highly polar alendronate HMBP scaffold. Photo-responsive prodrugs of alendronate are stable in physiological conditions and display reduced toxicity compared to alendronate against MDA-MB-231 cancer cells. However, the antiproliferative effect of these prodrugs is efficiently restored after cleavage of their nitroveratryl groups upon exposure to UV light. In addition, substitution of alendronate with such photo-responsive substituents drastically reduces its bone-binding properties, thereby potentially improving its biodistribution in soft tissues after i.v. administration. The development of such lipophilic photo-responsive prodrugs is a promising approach to fully exploit the anticancer effect of HMBPs on non-skeletal tumors.
Collapse
Affiliation(s)
- Aurélie Descamps
- Université Sorbonne Paris Nord, Department of Chemistry, UMR-CNRS, 7244, 1 Rue de Chablis, F-93000, Bobigny, France
| | | | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France
| | | | - Julia Deschamp
- Université Sorbonne Paris Nord, Department of Chemistry, UMR-CNRS, 7244, 1 Rue de Chablis, F-93000, Bobigny, France
| | - Maelle Monteil
- Université Sorbonne Paris Nord, Department of Chemistry, UMR-CNRS, 7244, 1 Rue de Chablis, F-93000, Bobigny, France
| | - Evelyne Migianu-Griffoni
- Université Sorbonne Paris Nord, Department of Chemistry, UMR-CNRS, 7244, 1 Rue de Chablis, F-93000, Bobigny, France
| | - Thibaut Legigan
- Université Sorbonne Paris Nord, Department of Chemistry, UMR-CNRS, 7244, 1 Rue de Chablis, F-93000, Bobigny, France.
| | - Marc Lecouvey
- Université Sorbonne Paris Nord, Department of Chemistry, UMR-CNRS, 7244, 1 Rue de Chablis, F-93000, Bobigny, France.
| |
Collapse
|
5
|
Chan AHY, Ho TCS, Leeper FJ. Thiamine analogues featuring amino-oxetanes as potent and selective inhibitors of pyruvate dehydrogenase. Bioorg Med Chem Lett 2024; 98:129571. [PMID: 38036274 DOI: 10.1016/j.bmcl.2023.129571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
Pyruvate dehydrogenase complex (PDHc) is suppressed in some cancer types but overexpressed in others. To understand its contrasting oncogenic roles, there is a need for selective PDHc inhibitors. Its E1-subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme and catalyses the first and rate-limiting step of the complex. In a recent study, we reported a series of ester-based thiamine analogues as selective TPP-competitive PDH E1 inhibitors with low nanomolar affinity. However, when the ester linker was replaced with an amide for stability reasons, the binding affinity was significantly reduced. In this study, we show that an amino-oxetane bioisostere of the amide improves the affinity and maintains stability towards esterase-catalysed hydrolysis.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
6
|
Chan AHY, Ho TCS, Irfan R, Hamid RAA, Rudge ES, Iqbal A, Turner A, Hirsch AKH, Leeper FJ. Design of thiamine analogues for inhibition of thiamine diphosphate (ThDP)-dependent enzymes: Systematic investigation through Scaffold-Hopping and C2-Functionalisation. Bioorg Chem 2023; 138:106602. [PMID: 37201323 DOI: 10.1016/j.bioorg.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
Thiamine diphosphate (ThDP), the bioactive form of vitamin B1, is an essential coenzyme needed for processes of cellular metabolism in all organisms. ThDP-dependent enzymes all require ThDP as a coenzyme for catalytic activity, although individual enzymes vary significantly in substrate preferences and biochemical reactions. A popular way to study the role of these enzymes through chemical inhibition is to use thiamine/ThDP analogues, which typically feature a neutral aromatic ring in place of the positively charged thiazolium ring of ThDP. While ThDP analogues have aided work in understanding the structural and mechanistic aspects of the enzyme family, at least two key questions regarding the ligand design strategy remain unresolved: 1) which is the best aromatic ring? and 2) how can we achieve selectivity towards a given ThDP-dependent enzyme? In this work, we synthesise derivatives of these analogues covering all central aromatic rings used in the past decade and make a head-to-head comparison of all the compounds as inhibitors of several ThDP-dependent enzymes. Thus, we establish the relationship between the nature of the central ring and the inhibitory profile of these ThDP-competitive enzyme inhibitors. We also demonstrate that introducing a C2-substituent onto the central ring to explore the unique substrate-binding pocket can further improve both potency and selectivity.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Rimsha Irfan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Rawia A A Hamid
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Emma S Rudge
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Amjid Iqbal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Saudi Arabia
| | - Alex Turner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus Building E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus Building E8.1, 66123 Saarbrücken, Germany
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
7
|
Chan AHY, Ho TCS, Leeper FJ. Open-chain thiamine analogues as potent inhibitors of thiamine pyrophosphate (TPP)-dependent enzymes. Org Biomol Chem 2023; 21:6531-6536. [PMID: 37522836 DOI: 10.1039/d3ob00884c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A common approach to studying thiamine pyrophosphate (TPP)-dependent enzymes is by chemical inhibition with thiamine/TPP analogues which feature a neutral aromatic ring in place of the positive thiazolium ring of TPP. These are potent inhibitors but their preparation generally involves multiple synthetic steps to construct the central ring. We report efficient syntheses of novel, open-chain thiamine analogues which potently inhibit TPP-dependent enzymes and are predicted to share the same binding mode as TPP. We also report some open-chain analogues that inhibit pyruvate dehydrogenase E1-subunit (PDH E1) and are predicted to occupy additional pockets in the enzyme other than the TPP-binding pockets. This opens up new possibilities for increasing the affinity and selectivity of the analogues for PDH, which is an established anti-cancer target.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
8
|
Chan AH, Ho TCS, Fathoni I, Pope R, Saliba KJ, Leeper FJ. Inhibition of Thiamine Diphosphate-Dependent Enzymes by Triazole-Based Thiamine Analogues. ACS Med Chem Lett 2023; 14:621-628. [PMID: 37197459 PMCID: PMC10184313 DOI: 10.1021/acsmedchemlett.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/19/2023] Open
Abstract
Thiamine is metabolized into the coenzyme thiamine diphosphate (ThDP). Interrupting thiamine utilization leads to disease states. Oxythiamine, a thiamine analogue, is metabolized into oxythiamine diphosphate (OxThDP), which inhibits ThDP-dependent enzymes. Oxythiamine has been used to validate thiamine utilization as an anti-malarial drug target. However, high oxythiamine doses are needed in vivo because of its rapid clearance, and its potency decreases dramatically with thiamine levels. We report herein cell-permeable thiamine analogues possessing a triazole ring and a hydroxamate tail replacing the thiazolium ring and diphosphate groups of ThDP. We characterize their broad-spectrum competitive inhibition of ThDP-dependent enzymes and of Plasmodium falciparum proliferation. We demonstrate how the cellular thiamine-utilization pathway can be probed by using our compounds and oxythiamine in parallel.
Collapse
Affiliation(s)
- Alex H.
Y. Chan
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Terence C. S. Ho
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Imam Fathoni
- Research
School of Biology, The Australian National
University, Canberra, ACT 2601, Australia
| | - Rebecca Pope
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Kevin J. Saliba
- Research
School of Biology, The Australian National
University, Canberra, ACT 2601, Australia
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
9
|
Chan AHY, Ho TCS, Parle DR, Leeper FJ. Furan-based inhibitors of pyruvate dehydrogenase: SAR study, biochemical evaluation and computational analysis. Org Biomol Chem 2023; 21:1755-1763. [PMID: 36723268 DOI: 10.1039/d2ob02272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Suppression of pyruvate dehydrogenase complex (PDHc) is a mechanism for cancer cells to manifest the Warburg effect. However, recent evidence suggests that whether PDHc activity is suppressed or activated depends on the type of cancer. The PDHc E1 subunit (PDH E1) is a thiamine pyrophosphate (TPP)-dependent enzyme, catalysing the first and rate-limiting step of PDHc; thus, there is a need for selective PDH E1 inhibitors. There is, however, inadequate understanding of the structure-activity relationship (SAR) and a lack of inhibitors specific for mammalian PDH E1. Our group have reported TPP analogues as TPP-competitive inhibitors to study the family of TPP-dependent enzymes. Most of these TPP analogues cannot be used to study PDHc in cells because (a) they inhibit all members of the family and (b) they are membrane-impermeable. Here we report derivatives of thiamine/TPP analogues that identify elements distinctive to PDH E1 for selectivity. Based on our SAR findings, we developed a series of furan-based thiamine analogues as potent, selective and membrane-permeable inhibitors of mammalian PDH E1. We envision that our SAR findings and inhibitors will aid work on using chemical inhibition to understand the oncogenic role of PDHc.
Collapse
Affiliation(s)
- Alex H Y Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Terence C S Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Daniel R Parle
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. .,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Finian J Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
10
|
Zhang L, Cheng Y, Liu YG, Chen X, Liu H. Anticancer Effect of Chlorambucil Enhanced by Chiral Phthalidyl Promoiety. Chem Biodivers 2023; 20:e202201025. [PMID: 36427041 DOI: 10.1002/cbdv.202201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Phthalidyl promoiety has been used in several drugs, but they were all marketed in racemic form. The pharmaceutical effects of each enantiomer have not been clearly demonstrated. In this project, an anticancer chemotherapy drug, chlorambucil, was modified as enantiopure phthalidyl prodrugs. The enantiomers, together with phthalidyl unit and their racemic mixture, were then subject to the in vivo bioactivity tests against B16F10 melanoma cells. It was found that proper chirality within the promoiety had noticeably better in vivo pharmacological effects than the parent drug, the enantiomer and racemic mixture. This merit perhaps could be extended from the phthalidyl prodrugs to other chirality containing prodrugs.
Collapse
Affiliation(s)
- Long Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yisa Cheng
- First Affiliated Hospital of Zhengzhou University, and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ying-Guo Liu
- First Affiliated Hospital of Zhengzhou University, and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Hongmei Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
11
|
Chan AHY, Ho TCS, Agyei-Owusu K, Leeper FJ. Synthesis of pyrrothiamine, a novel thiamine analogue, and evaluation of derivatives as potent and selective inhibitors of pyruvate dehydrogenase. Org Biomol Chem 2022; 20:8855-8858. [DOI: 10.1039/d2ob01819e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pyrrothiamine, a new thiamine analogue with the S replaced by CH, has been synthesised and is a moderate inhibitor of a range of thiamine pyrophosphate-dependent enzymes. Its ester 19 is a potent and selective inhibitor of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Alex H. Y. Chan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Terence C. S. Ho
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Kwasi Agyei-Owusu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Finian J. Leeper
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|