1
|
Rushinek H, Cohen A, Casap N, Alterman M. The Effect of Implant-Associated Factors on the Long-Term Outcomes of Dental Implants. Oral Maxillofac Surg Clin North Am 2025; 37:51-63. [PMID: 39384509 DOI: 10.1016/j.coms.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
The long-term outcomes of dental implants are influenced by a variety of factors, all of which play critical roles in their stability, functionality, and esthetic appeal. This review focuses on several key characteristics of dental implants that impact their success overtime: dimensional, morphologic, material, osseointegrative, and connective/prosthetic characteristics. This article synthesizes current literature to analyze how these factors influence the long-term success of dental implants, emphasizing the need for a comprehensive approach in implant selection and placement.
Collapse
Affiliation(s)
- Heli Rushinek
- Faculty of Dental Medicine, Hebrew University of Jerusalem, PO Box 12272, Jerusalem 9112102, Israel; Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Jerusalem, Israel
| | - Adir Cohen
- Faculty of Dental Medicine, Hebrew University of Jerusalem, PO Box 12272, Jerusalem 9112102, Israel; Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Jerusalem, Israel
| | - Nardy Casap
- Faculty of Dental Medicine, Hebrew University of Jerusalem, PO Box 12272, Jerusalem 9112102, Israel; Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Jerusalem, Israel
| | - Michael Alterman
- Faculty of Dental Medicine, Hebrew University of Jerusalem, PO Box 12272, Jerusalem 9112102, Israel; Department of Oral and Maxillofacial Surgery, Hadassah Medical Center, Jerusalem, Israel.
| |
Collapse
|
2
|
Sharma P, Mishra V, Murab S. Unlocking Osseointegration: Surface Engineering Strategies for Enhanced Dental Implant Integration. ACS Biomater Sci Eng 2025; 11:67-94. [PMID: 39620938 DOI: 10.1021/acsbiomaterials.4c01178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Tooth loss is a prevalent problem faced by individuals of all ages across the globe. Various biomaterials, such as metals, bioceramics, polymers, composites of ceramics and polymers, etc., have been used for the manufacturing of dental implants. The success of a dental implant primarily depends on its osseointegration rate. The current surface modification techniques fail to imbibe the basics of tooth development, which can impart better mineralization and osseointegration. This can be improved by developing an understanding of the developmental pathways of dental tissue. Stimulating the correct signaling pathways through inductive material systems can bring about a paradigm shift in dental implant materials. The current review focuses on the developmental pathway and mineralization process that happen during tooth formation and how surface modifications can help in biomimetic mineralization, thereby enhancing osseointegration. We further describe the effect of dental implant surface modifications on mineralization, osteoinduction, and osseointegration; both in vitro and in vivo. The review will help us to understand the natural process of teeth development and mineralization and how the surface properties of dental implants can be further improved to mimic teeth development, in turn increasing osseointegration.
Collapse
Affiliation(s)
- Pankaj Sharma
- School of Biosciences & Bioengineering, Indian Institute of Technology Mandi, Kamand HP-175075, India
| | - Vedante Mishra
- School of Biosciences & Bioengineering, Indian Institute of Technology Mandi, Kamand HP-175075, India
| | - Sumit Murab
- School of Biosciences & Bioengineering, Indian Institute of Technology Mandi, Kamand HP-175075, India
- Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology Mandi, Kamand HP-175075, India
- BioX Centre, Indian Institute of Technology Mandi, Kamand HP-175075, India
- Advanced Materials Research Centre, Indian Institute of Technology Mandi, Kamand HP-175075, India
- Technology Innovation Hub in Human-Computer Interaction (iHub), Kamand HP-175075, India
| |
Collapse
|
3
|
Abushahba F, Riivari S, Areid N, Närvä E, Kylmäoja E, Ritala M, Tuukkanen J, Vallittu PK, Närhi TO. Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. J Biomater Appl 2025:8853282251313503. [PMID: 39773092 DOI: 10.1177/08853282251313503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used (n = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC). The ALD-HA surface was characterized with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. The initial cell adhesion and HD formation of HGKs were evaluated after a 24-h cultivation period. The cell proliferation was assessed by cultivating cells for 1, 3, and 7 d. The expression levels of the integrin mediating cell adhesion were detected with the Western Blot method. In addition, cell spreading and expression of the proteins mediating cell adhesion were imaged using a confocal microscope. SEM-EDS analysis demonstrated the formation of HA on the ALD-HA surfaces. The relative cell attachment was significantly higher (p < .05) on the ALD-HA compared to the NC surface after 1 and 3 d of cell culture. No significant difference was found in integrin α6 or β4 expression. The microscope evaluation showed significantly increased cell spreading with peripheral HD expression on ALD-HA compared to the NC surfaces (p = .0001). Moreover, laminin γ2 expression was significantly higher on the ALD-HA than on the NC surfaces (p < .001). Compared to the NC Ti surface, the ALD-HA coating has favorable effects on HGK proliferation, growth, and cell spreading. This indicates that the ALD-HA coating has good potential for improving mucosal attachment on implant surfaces.
Collapse
Affiliation(s)
- Faleh Abushahba
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Elisa Närvä
- Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, Turku, Finland
| | - Elina Kylmäoja
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, Oulu, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Research Unit of Translational Medicine, Medical Research Center, University of Oulu, Oulu, Finland
| | - Pekka K Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Center-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- The Wellbeing Service County Southwest Finland, Turku, Finland
| | - Timo O Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland
- The Wellbeing Service County Southwest Finland, Turku, Finland
| |
Collapse
|
4
|
Lee SY, Daher R, Jung JH, Han K, Sailer I, Lee JH. Risk of Late Implant Loss and Peri-Implantitis Based on Dental Implant Surfaces and Abutment Types: A Nationwide Cohort Study in the Elderly. J Clin Periodontol 2024; 51:1574-1585. [PMID: 39406495 DOI: 10.1111/jcpe.14079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/21/2024] [Accepted: 10/02/2024] [Indexed: 12/19/2024]
Abstract
AIM This nationwide population-based cohort study aimed to assess the incidence of implant complication treatments, including implant removal procedures and peri-implantitis treatments, in relation to implant surfaces and abutment types. METHODS Data from the National Health Insurance Service, covering approximately 50 million individuals, were used. Implants and abutments were categorized by codes, including surfaces such as resorbable blasting media, sandblasted large grit and acid-etched (SA) and hydroxyapatite coating, along with abutment structures (one-piece straight, two-piece straight, angled). The incidence of implant complication treatments was analysed using Kaplan-Meier curves and Cox proportional hazards regression (α = 0.05). RESULTS The study included 2,354,706 implants. The SA group had the lowest hazard ratio for implant removal procedures (p < 0.0001). No significant differences were found in the risk of peri-implantitis treatments between implant surfaces (p = 0.0587). The risk of implant complication treatments did not differ significantly by the abutment type (p = 0.9542). The incidence rate of implant complication treatments was < 3.9 per 1000 implant-years across all groups. CONCLUSIONS The SA group showed a slightly lower risk of late implant loss, whereas no significant association was found for the abutment type groups. All implant and abutment type groups showed an incidence rate of < 3.9 per 1000 implant-years for complication treatments.
Collapse
Affiliation(s)
- Su Young Lee
- Department of Prosthodontics, Seoul St. Mary's Dental Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - René Daher
- Division of Cariology and Endodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Jin-Hyung Jung
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Irena Sailer
- Division of Fixed Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Jae-Hyun Lee
- Department of Prosthodontics, Seoul National University School of Dentistry, Seoul, Republic of Korea
- Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| |
Collapse
|
5
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
6
|
Astasov-Frauenhoffer M, Marot L, Sanchez F, Steiner R, Lohberger B, Bornstein MM, Wagner RS, Kühl S, Mukaddam K. Effects of nanomodified titanium surfaces considering bacterial colonization and viability of osteoblasts and fibroblasts. J Biomed Mater Res A 2024; 112:2160-2169. [PMID: 38925622 DOI: 10.1002/jbm.a.37768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/29/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
This study investigates nanostructured titanium surfaces (Ti2 spikes) that promote the viability of osteoblasts and fibroblasts and prevent bacterial colonisation. Helium ion irradiation was adopted to produce nanometric-sized cones on titanium. Human osteoblasts (hFOB) and human gingiva fibroblasts (hGF) were used for analysis. A viability and a cytotoxicity assay were conducted to evaluate the lactate dehydrogenase (LDH) activity and assess cell damage in Ti2 spikes compared to titanium discs with a sandblasted and acid-etched (Ti2 SLA) surface. The antibacterial activity was investigated against Escherichia coli, Streptococcus mutans, Fusobacterium nucleatum, and Porphyromonas gingivalis. In the course of the cultivation, both hGF and hFOB demonstrated significantly reduced viability on the Ti2 spikes surface. hGF cells exhibited a slight but significant increase in LDH release. In contrast, hFOB showed reduced cytotoxicity on this surface. On the Ti2 spikes surface, hGF cells exhibited a significant reduction in gene expression of VCL, Src-1, and ITGα5. However, the integrin subunits ITGα1 and ITGα3 showed upregulation on the Ti2 spikes surface. The Ti2 spikes surface significantly increased the expression of almost all osteogenic markers. The results of conventional culturing demonstrated a statistically significant decrease in the number of viable cells for S. mutans, F. nucleaum, and greater quantities of P. gingivalis on Ti2 spikes surface compared to control. However, no such reduction was detected for E. coli. The long-term success of implants relies on establishing and maintaining hard and soft peri-implant tissues. Ti2 spikes represent a novel and promising approach to enhance osseointegration and optimize biocompatibility.
Collapse
Affiliation(s)
- Monika Astasov-Frauenhoffer
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | - Laurent Marot
- Department of Physics, University of Basel, Basel, Switzerland
| | - Fabien Sanchez
- Department of Physics, University of Basel, Basel, Switzerland
| | - Roland Steiner
- Department of Physics, University of Basel, Basel, Switzerland
| | - Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University Graz, Graz, Austria
| | - Michael M Bornstein
- Department of Oral Health & Medicine, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | | | - Sebastian Kühl
- Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| | - Khaled Mukaddam
- Department of Oral Surgery, University Center for Dental Medicine Basel (UZB), University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Sharma P, Saurav S, Tabassum Z, Sood B, Kumar A, Malik T, Mohan A, Girdhar M. Applications and interventions of polymers and nanomaterials in alveolar bone regeneration and tooth dentistry. RSC Adv 2024; 14:36226-36245. [PMID: 39534053 PMCID: PMC11555558 DOI: 10.1039/d4ra06092j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammatory diseases exert a significant influence on the periodontium, serving as a primary contributor to the development of periodontitis. The advancement of periodontitis, characterized by manifestations, such as gingival recession, increased periodontal pocket depth and resorption across the alveolar bone, cementum and periodontal ligaments, poses a significant risk of dental detachment. Untreated or delayed treatment further worsens these deleterious outcomes. This emphasizes the critical importance of timely and effective interventions in reducing the consequences associated with periodontitis. Addressing these challenges requires to focus on the fabrication of bioactive materials, particularly scaffolds, as pivotal elements in tissue engineering processes aimed at alveolar bone regeneration. The incorporation of natural polymers, particularly their amalgamation with clays and clay minerals, such as montmorillonite and LAPONITE®, has been identified as a prospective pathway for advancing biomaterials in the realm of dentistry. This amalgamation holds significant potential for the production of biomaterials with enhanced properties, underscoring its relevance and applicability in dental research. This review paper explores the current advancements in natural polymer-based biomaterials employed in various dental applications, including oral caries, regenerative medicine and alveolar bone regeneration. The principal aim of this investigation is to briefly compile and present the existing knowledge while updating information on the utilization of natural polymers in the formulation of biomaterials. Additionally, the paper aims to elucidate their applications within contemporary research trends and developments in the field of odontology. This article extensively delves into pertinent research to assess the progress of nanotechnology in the context of tissue regeneration and the treatment of oral diseases.
Collapse
Affiliation(s)
- Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Bhawana Sood
- School of Physical and Chemical Engineering, Lovely Professional University Phagwara 144401 Punjab India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology New Delhi 110067 India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University Jimma 0000 Ethiopia
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University Phagwara 144401 Punjab India
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University Phagwara 144401 Punjab India
| |
Collapse
|
8
|
Dong Y, Hu Y, Hu X, Wang L, Shen X, Tian H, Li M, Luo Z, Cai C. Synthetic nanointerfacial bioengineering of Ti implants: on-demand regulation of implant-bone interactions for enhancing osseointegration. MATERIALS HORIZONS 2024. [PMID: 39480512 DOI: 10.1039/d4mh01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Titanium and its alloys are the most commonly used biometals for developing orthopedic implants to treat various forms of bone fractures and defects, but their clinical performance is still challenged by the unfavorable mechanical and biological interactions at the implant-tissue interface, which substantially impede bone healing at the defects and reduce the quality of regenerated bones. Moreover, the impaired osteogenesis capacity of patients under certain pathological conditions such as diabetes and osteoporosis may further impair the osseointegration of Ti-based implants and increase the risk of treatment failure. To address these issues, various modification strategies have been developed to regulate the implant-bone interactions for improving bone growth and remodeling in situ. In this review, we provide a comprehensive analysis on the state-of-the-art synthetic nanointerfacial bioengineering strategies for designing Ti-based biofunctional orthopedic implants, with special emphasis on the contributions to (1) promotion of new bone formation and binding at the implant-bone interface, (2) bacterial elimination for preventing peri-implant infection and (3) overcoming osseointegration resistance induced by degenerative bone diseases. Furthermore, a perspective is included to discuss the challenges and potential opportunities for the interfacial engineering of Ti implants in a translational perspective. Overall, it is envisioned that the insights in this review may guide future research in the area of biometallic orthopedic implants for improving bone repair with enhanced efficacy and safety.
Collapse
Affiliation(s)
- Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Xinqiang Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lingshuang Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Xinkun Shen
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| | - Hao Tian
- Kairui Stomatological Hospital, Chengdu 610211, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Chunyuan Cai
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325016, China.
| |
Collapse
|
9
|
Alzoubi F, Alhumaidan AA, AlRumaih HS, Alqarawi FK, Omar O. The relationship between the secondary implant stability quotient and oxidized implant-related factors: A retrospective study. Heliyon 2024; 10:e39156. [PMID: 39640737 PMCID: PMC11620092 DOI: 10.1016/j.heliyon.2024.e39156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Objective The present retrospective study aimed to determine the relationship between the secondary implant stability quotient and different parameters related to an oxidized implant. Methods A total of 135 patients (305 oxidized implants) were included. Implant-related factors (length, diameter, surgical and loading protocols, grafting, insertion torque, and primary stability) were used for comparisons and linear regression analyses, using secondary ISQ as the dependent variable. Results At the patient level, the mean time from implantation to secondary ISQ registration was 20.3 ± 29 weeks, and the mean secondary ISQ was 77.30 ± 7.22. The ISQ did not reveal significant differences regarding implant lengths, loading protocol, and simultaneous grafting. In contrast, platform diameters (3.5, 4.3, and 5.0), surgical protocols (one stage versus two stages), insertion torque (<35 Ncm versus >35 Ncm), and primary stability (achieved versus not achieved) all revealed significant secondary ISQ differences. Nevertheless, the regression analysis demonstrated that the platform diameter was the only variable significantly and positively predicted the secondary ISQ. Similar findings were found with the implant level analysis. Conclusions Among different implant- and protocol-related parameters, the platform diameter of the oxidized implant appears to be the only significant predictor of high secondary ISQ values at the time of superstructure connection.
Collapse
Affiliation(s)
- Fawaz Alzoubi
- Department of General Dental Practice, Faculty of Dentistry, Kuwait University, Kuwait
| | - Abdulkareem Abdullah Alhumaidan
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Hamad Saleh AlRumaih
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Firas Khalid Alqarawi
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Rattanapitak R, Thong-Ngarm W. Human gingival fibroblast response on zirconia and titanium implant abutment: A systematic review. J Prosthodont 2024. [PMID: 39375915 DOI: 10.1111/jopr.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The peri-implant region, where restoration interfaces with mucosal tissue, plays an essential role in overall implant success and is just as important as osseointegration. The implant abutment materials are in intimate contact with human gingival fibroblasts (HGFs). This study compares the proliferation of HGFs between zirconia and titanium abutments used in dental implants. METHODS An electronic search was performed using PubMed, EMBASE, and Web of Science databases. English articles based on in vitro studies testing HGFs proliferation on zirconia and titanium implant abutment materials were included. A quality assessment of the selected study was performed using the web-based Science in Risk Assessment and Policy (SciRAP) tool. The HGFs proliferation and cellular morphology tests on zirconia and titanium materials from the included studies were summarized, exploring the role of material surface characteristics. RESULTS The electronic search yielded 401 studies, of which 17 were selected for inclusion. Zirconia exhibited comparable or superior efficacy in promoting the proliferation of HGFs compared to titanium. Observations on cellular morphology showed similar outcomes for both materials. Establishing a definitive relationship between contact angle, surface roughness, and their influence on cellular response remains challenging due to the varied methodological approaches in the reviewed studies. CONCLUSION Based on the findings of this systematic review, zirconia shows comparable reliability to titanium as an abutment material for HGFs proliferation, with comparable or superior HGFs proliferative outcomes.
Collapse
Affiliation(s)
- Ratanatip Rattanapitak
- Division of Crowns and Bridges, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Weeranuch Thong-Ngarm
- Division of Crowns and Bridges, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Chen S, Gao G, Shi J, Li N, Xie L, Zhang Y, Shan Z, Xie J, Xiao Y, Chen Z, Chen Z. Unveiling the governing role of 'remodeling triangle area' in soft-hard tissue interface equilibrium for metal implants advancement. Mater Today Bio 2024; 28:101170. [PMID: 39211290 PMCID: PMC11357867 DOI: 10.1016/j.mtbio.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Metal implants holds significant promise for diverse fixed prostheses. However, their long-term reliability and broader application are hindered by challenges related to the disequilibrium at the soft-hard tissue interface. By using anti-inflammatory (PDA/IL4) and pro-inflammatory (PDA/LPS/IFNγ) coatings to modulate distinct immune characteristics, we discovered a dynamic bioactive structure at the soft-hard tissue interface around metal implant, which we have named the 'Remodeling Triangle Area' (RTA). We further demonstrate that the RTA can be influenced by the PDA/IL4 coating to favor a phenotype that enhances both innate and adaptive immunity. This leads to stronger epithelial adhesion, the formation of dense connective tissue via IGF1 secretion, and a more balanced soft-hard tissue interface through the OPG/RANKL axis. Conversely, the PDA/LPS/IFNγ coating shifts the RTA towards a phenotype that activates the innate immune response. This results in a less cohesive tissue structure and bone resorption, characterized by reduced IGF1 secretion and an imbalanced OPG/RANKL axis. Over all, our study introduces the novel concept termed the 'Remodeling Triangle Area' (RTA), an immune-rich anatomical region located at the nexus of the implant interface, epithelial, connective, and bone tissue, which becomes highly interactive post-implantation to modulate the soft-hard tissue interface equilibrium. We believe that an RTA-centric, immunomodulatory approach has the potential to revolutionize the design of next-generation metal implants, providing unparalleled soft-hard tissue interface equilibrium properties.
Collapse
Affiliation(s)
- Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Guangqi Gao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiamin Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Na Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Lv Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yingye Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiaxin Xie
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yin Xiao
- School of Medicine and Dentistry, Griffith University (GU), Gold Coast, QLD, 4222, Australia
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
12
|
Barylyak A, Wojnarowska-Nowak R, Kus-Liśkiewicz M, Krzemiński P, Płoch D, Cieniek B, Bobitski Y, Kisała J. Photocatalytic and antibacterial activity properties of Ti surface treated by femtosecond laser-a prospective solution to peri-implant disease. Sci Rep 2024; 14:20926. [PMID: 39251685 PMCID: PMC11385220 DOI: 10.1038/s41598-024-70103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Laser texturing seems to be a promising technique for reducing bacterial adhesion on titanium implant surfaces. This work aims to demonstrate the possibility of obtaining a functionally orientated surface of titanium implant elements with a specific architecture with specific bacteriological and photocatalytic properties. Femtosecond laser-generated surface structures, such as laser-induced periodic surface structures (LIPSS, wrinkles), grooves, and spikes on titanium, have been characterised by XRD, Raman spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of the titanium surfaces produced was tested based on the degradation effect of methylene blue (MB). The correlation between the photocatalytic activity of TiO2 coatings and their morphology and structure has been analysed. Features related to the size, shape, and distribution of the roughness patterns were found to influence the adhesion of the bacterial strain on different surfaces. On the laser-structurised surface, the adhesion of Escherichia coli bacteria were reduced by 80% compared to an untreated reference surface.
Collapse
Affiliation(s)
- Adriana Barylyak
- Danylo Halytsky Lviv National Medical University, Pekarska Str. 69, Lviv, 79010, Ukraine.
| | - Renata Wojnarowska-Nowak
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | | | - Piotr Krzemiński
- Institute of Physics, University of Rzeszow, 35-959, Rzeszow, Poland
| | - Dariusz Płoch
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | - Bogumił Cieniek
- Institute of Materials Engineering, University of Rzeszow, Pigonia 1 Str., 35-959, Rzeszow, Poland
| | - Yaroslav Bobitski
- Institute of Physics, University of Rzeszow, 35-959, Rzeszow, Poland
- NoviNano Lab LLC, Pasternaka 5, Lviv, 79015, Ukraine
| | - Joanna Kisała
- Institute of Biology, University of Rzeszow, Zelwerowicza 4 Str., 35-601, Rzeszow, Poland.
| |
Collapse
|
13
|
Baus-Domínguez M, Oliva-Ferrusola E, Maza-Solano S, Ruiz-de-León G, Serrera-Figallo MÁ, Gutiérrez-Perez JL, Torres-Lagares D, Macías-García L. Biological Response of the Peri-Implant Mucosa to Different Definitive Implant Rehabilitation Materials. Polymers (Basel) 2024; 16:1534. [PMID: 38891480 PMCID: PMC11174483 DOI: 10.3390/polym16111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Sealing the peri-implant tissue is a determining factor for long-term implant survival. In the transmucosal region, the cervical fraction of the prosthetic crown is in contact with these tissues, so mucointegration will also be influenced by the biomaterial used for the prosthetic restoration. This study aims to compare the tissue response generated by definitive restorative materials and polymeric materials from a histological point of view. METHODS This study performed an observational prospective cohort study in which biopsies of the peri-implant mucosa were taken after placement of implant-supported prosthetic restorations made of different materials (zirconium oxide, lithium disilicate, and PMMA). RESULTS A statistically significant difference was observed in the increase in the thickness of the non-keratinized epithelium when comparing the definitive materials (zirconium oxide/lithium disilicate) vs. the provisional material (PMMA) and in the number of collagen fibers when comparing zirconium oxide and lithium disilicate. CONCLUSIONS This study found that zirconia is the material that presents the most adequate biological response of peri-implant tissues. It shows a lower intensity of inflammatory cellular content, a total normality in the number of collagen fibers (the arrangement of the fibers is normal in 90% of the cases), and vascular proliferation of connective tissue in 83% of the cases. These parameters make it a material with a predictable response. Similarly, only the following slight statistically significant differences between the definitive and provisional materials are observed, indicating that the biological response generated by the provisional material (PMMA) is not very different from that obtained with the placement of the definitive restoration.
Collapse
Affiliation(s)
- María Baus-Domínguez
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Elena Oliva-Ferrusola
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Serafín Maza-Solano
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Gonzalo Ruiz-de-León
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - María-Ángeles Serrera-Figallo
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - José-Luis Gutiérrez-Perez
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Daniel Torres-Lagares
- Department of Stomatology, Faculty of Dentistry, University of Seville, C/Avicena S/N, 41009 Seville, Spain; (E.O.-F.); (S.M.-S.); (G.R.-d.-L.); (M.-Á.S.-F.); (J.-L.G.-P.); (D.T.-L.)
| | - Laura Macías-García
- Department of Cytology and Normal and Pathological Histology, School of Medicine, University of Seville, Av. Sánchez Pizjuán S/N, 41009 Seville, Spain
| |
Collapse
|
14
|
Shrivas S, Samaur H, Yadav V, Boda SK. Soft and Hard Tissue Integration around Percutaneous Bone-Anchored Titanium Prostheses: Toward Achieving Holistic Biointegration. ACS Biomater Sci Eng 2024; 10:1966-1987. [PMID: 38530973 DOI: 10.1021/acsbiomaterials.3c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A holistic biointegration of percutaneous bone-anchored metallic prostheses with both hard and soft tissues dictates their longevity in the human body. While titanium (Ti) has nearly solved osseointegration, soft tissue integration of percutaneous metallic prostheses is a perennial problem. Unlike the firm soft tissue sealing in biological percutaneous structures (fingernails and teeth), foreign body response of the skin to titanium (Ti) leads to inflammation, epidermal downgrowth and inferior peri-implant soft tissue sealing. This review discusses various implant surface treatments/texturing and coatings for osseointegration, soft tissue integration, and against bacterial attachment. While surface microroughness by SLA (sandblasting with large grit and acid etched) and porous calcium phosphate (CaP) coatings improve Ti osseointegration, smooth and textured titania nanopores, nanotubes, microgrooves, and biomolecular coatings encourage soft tissue attachment. However, the inferior peri-implant soft tissue sealing compared to natural teeth can lead to peri-implantitis. Toward this end, the application of smart multifunctional bioadhesives with strong adhesion to soft tissues, mechanical resilience, durability, antibacterial, and immunomodulatory properties for soft tissue attachment to metallic prostheses is proposed.
Collapse
Affiliation(s)
- Sangeeta Shrivas
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Vinod Yadav
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sunil Kumar Boda
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
15
|
Solís Pinargote NW, Yanushevich O, Krikheli N, Smirnov A, Savilkin S, Grigoriev SN, Peretyagin P. Materials and Methods for All-Ceramic Dental Restorations Using Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM) Technologies-A Brief Review. Dent J (Basel) 2024; 12:47. [PMID: 38534271 DOI: 10.3390/dj12030047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 03/28/2024] Open
Abstract
The materials used in dentistry for the fabrication of all-ceramic restorations have undergone great and rapid developments over the last two decades. Among the most common ceramic materials in dentistry are those based on zirconium and lithium disilicate. Due to the properties of these materials, they are in great demand in the field of dental restoration production. Thus, dental restorations that will use those materials are commonly machined in CAD/CAM systems, which offer the possibility of manufacturing all-ceramic dental restorations in a very short period of time. This article reviews the modern materials in the field of all-ceramic dental restorations, their manufacturing processes, as well as what determines which ceramic materials are used for the production of CAD/CAM blanks and their production technology.
Collapse
Affiliation(s)
- Nestor Washington Solís Pinargote
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", 127055 Moscow, Russia
| | - Oleg Yanushevich
- Federal State Budgetary Educational Institution of the Higher Education "A.I. Yevdokimov Moscow State University of Medicine and Dentistry" of the Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia
| | - Natella Krikheli
- Federal State Budgetary Educational Institution of the Higher Education "A.I. Yevdokimov Moscow State University of Medicine and Dentistry" of the Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia
| | - Anton Smirnov
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", 127055 Moscow, Russia
| | - Sergey Savilkin
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", 127055 Moscow, Russia
| | - Sergey N Grigoriev
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", 127055 Moscow, Russia
| | - Pavel Peretyagin
- Federal State Budgetary Educational Institution of the Higher Education Moscow State University of Technology "STANKIN", 127055 Moscow, Russia
- Federal State Budgetary Educational Institution of the Higher Education "A.I. Yevdokimov Moscow State University of Medicine and Dentistry" of the Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia
| |
Collapse
|
16
|
Gupta V, Garg A, Tewari N, Srivastav S, Chanda A. Development of patient-specific finite element model for study of composite dental implants. Biomed Phys Eng Express 2024; 10:025035. [PMID: 38350117 DOI: 10.1088/2057-1976/ad28ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
Traumatic dental injuries can occur due to various reasons such as accidents, sports injuries, fights, falls, and others. These injuries can affect the teeth, gums, and surrounding tissues, and can range from minor chips and cracks to severe fractures, dislocations, and avulsions (when the tooth is completely knocked out of the socket). The most common way to address this is by replacing affected teeth with dental implants. The purpose of this research is to evaluate the use of composite materials in dental implants and compare them with the traditionally used materials using a patient specific cone beam computed tomography (CBCT) based finite element model (FEM). To conduct this research, two different implant groups i.e., traditional implant and composite implant were designed using Titanium grade 4, zirconium oxide-reinforced lithium silicate (ZLS), and Zirconia (ZrO2). Six dental implants were designed namely Ti implant, ZLS implant, ZrO2implant, Ti-ZrO2composite, Ti-ZLS composite, and ZLS-ZrO2composite using 3D modelling software. Detailed full-scale 3D models of patient specific dental implant were developed and traumatic loading conditions were applied to the enamel of central incisor teeth or crown of dental implant, and maxilla was constrained in all directions. It was found that the use of composite materials for dental implants can reduce the stresses over the surface of abutment and implant as compared to traditional implants. The detailed models developed as a part of this study can advance the research on dental implants, and with further experimental validation allow the use of composite materials for fabrication of more stable dental implants.
Collapse
Affiliation(s)
- Vivek Gupta
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Anshika Garg
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
| | - Nitesh Tewari
- Department of Pediatric and Preventive Dentistry, All India Institute of Medical Sciences (AIIMS), Delhi, India
| | | | - Arnab Chanda
- Centre for Biomedical Engineering, Indian Institute of Technology (IIT), Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences (AIIMS), Delhi, India
| |
Collapse
|
17
|
Chauvin A, Garda MR, Snyder N, Cui B, Delpouve N, Tan L. Hydroxyapatite-Based Coatings on Silicon Wafers and Printed Zirconia. J Funct Biomater 2023; 15:11. [PMID: 38248678 PMCID: PMC10817446 DOI: 10.3390/jfb15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Dental surgery needs a biocompatible implant design that can ensure both osseointegration and soft tissue integration. This study aims to investigate the behavior of a hydroxyapatite-based coating, specifically designed to be deposited onto a zirconia substrate that was intentionally made porous through additive manufacturing for the purpose of reducing the cost of material. Layers were made via sol-gel dip coating by immersing the porous substrates into solutions of hydroxyapatite that were mixed with polyethyleneimine to improve the adhesion of hydroxyapatite to the substrate. The microstructure was determined by using X-ray diffraction, which showed the adhesion of hydroxyapatite; and atomic force microscopy was used to highlight the homogeneity of the coating repartition. Thermogravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed successful, selective removal of the polymer and a preserved hydroxyapatite coating. Finally, scanning electron microscopy pictures of the printed zirconia ceramics, which were obtained through the digital light processing additive manufacturing method, revealed that the mixed coating leads to a thicker, more uniform layer in comparison with a pure hydroxyapatite coating. Therefore, homogeneous coatings can be added to porous zirconia by combining polyethyleneimine with hydroxyapatite. This result has implications for improving global access to dental care.
Collapse
Affiliation(s)
- Antoine Chauvin
- Groupe de Physique des Matériaux UMR 6634, CNRS, Université de Rouen Normandie, INSA Rouen Normandie, F-76000 Rouen, France (M.-R.G.)
| | - Marie-Rose Garda
- Groupe de Physique des Matériaux UMR 6634, CNRS, Université de Rouen Normandie, INSA Rouen Normandie, F-76000 Rouen, France (M.-R.G.)
| | - Nathan Snyder
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA (B.C.); (L.T.)
| | - Bai Cui
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA (B.C.); (L.T.)
| | - Nicolas Delpouve
- Groupe de Physique des Matériaux UMR 6634, CNRS, Université de Rouen Normandie, INSA Rouen Normandie, F-76000 Rouen, France (M.-R.G.)
| | - Li Tan
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE 68588, USA (B.C.); (L.T.)
| |
Collapse
|
18
|
Zhang J, Liu Z, Qiu J, Yang J. Impact of locally delivered diphosphonates on dental implants: A systematic review and meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101521. [PMID: 37276968 DOI: 10.1016/j.jormas.2023.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/21/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Dental implants are a common solution for edentulous patients. This systematic review and meta-analysis aimed to determine whether locally delivered diphosphonates influence the osseointegration of dental implants in humans. MATERIAL & METHODS In March 2023, we conducted an electronic systematic literature search using three databases (MEDLINE/PubMed, Embase, Web of Science). We included randomized trials documenting locally delivered diphosphonates in partly edentulous patients. Two independent reviewers evaluated study eligibility, extracted data, and assessed study quality. RESULTS We have identified 752 studies, out of which 7 studies involving 154 patients met the inclusion criteria. The overall meta-analysis indicates that diphosphonates are associated with marginal bone loss during the pre-loading period (mean difference (MD) of -0.18 mm, 95% CI -0.24 to -0.12, p<0.00001; I²=83%), marginal bone loss after one year (MD -0.35 mm, 95% CI -0.56 to -0.14, p = 0.0009; I²=14%), and five years loading (MD -0.34 mm, 95% CI -0.56 to -0.13, p = 0.002; I²=0%). However, the drug did not seem to affect the implant survival rate (risk ratios (RR) of 1.02, 95% CI 0.98 to 1.08, P = 0.33; I²=9%). DISCUSSION This study suggests that local use of diphosphonates does not affect implant survival, but it does reduce marginal bone loss and improve the osseointegration of dental implants in humans. However, future research must be more standardized and address methodological biases to draw more conclusive findings.
Collapse
Affiliation(s)
- Jiahao Zhang
- The Center of Stomatology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Zhenni Liu
- The Center of Stomatology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jiezi Qiu
- The Center of Stomatology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jianxin Yang
- The Center of Stomatology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
19
|
Xue Y, Zhang L, Liu F, Kong L, Ma D, Han Y. Fluoride releasing photothermal responsive TiO 2 matrices for antibiosis, biosealing and bone regeneration. J Control Release 2023; 363:657-669. [PMID: 37832724 DOI: 10.1016/j.jconrel.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Peri-implantitis induced by infection leads to gingival recession, alveolar resorption and eventual dental implant failure. So, antibiosis and biosealing of abutments as well as osseointegration of roots need to be projected seriously during the whole service lifespan of dental implants. In this work, a multipurpose photothermal therapy strategy based on Si/P/F doped TiO2 matrix is proposed to address the above issues. This TiO2 matrix not only has outstanding photothermal response, but also triggers the release of F ions under near-infrared (NIR) light irradiation. Local hyperthermia assisted with the released F ions reduces adenosine triphosphate (ATP) synthesis of staphylococcus aureus (S. aureus), increases bacterial membrane permeability, and induces abundant of reactive oxygen species, resulting in the oxidation of cellular components and eventual death of bacteria. Furthermore, the synergic action of mild photothermal stimulation and Si/P/F ions of TiO2 matrix up-regulates gingival epithelial cells behavior (e.g., hemidesmosome formation) and osteoblasts response in vitro. In an infected model, this TiO2 matrix obviously eliminates bacteria, reduces inflammatory response, improves epithelial sealing and osseointegration, and reduces alveolar resorption by regulating NIR irradiation.
Collapse
Affiliation(s)
- Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Fuwei Liu
- Fourth Military Medical University, Xi'an 710038, China
| | - Liang Kong
- Fourth Military Medical University, Xi'an 710038, China
| | - Dayan Ma
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
20
|
Ma M, Zhao M, Ji R, Guo Y, Li D, Zeng S. Adjusting the Dose of Ag-Ion Implantation on TiN-Ag-Modified SLA-Ti Creates Different Micronanostructures: Implications on Bacteriostasis, Biocompatibility, and Osteogenesis in Dental Implants. ACS OMEGA 2023; 8:39269-39278. [PMID: 37901550 PMCID: PMC10601048 DOI: 10.1021/acsomega.3c04769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023]
Abstract
The prevention of aseptic loosening and peri-implantitis is crucial for the success of dental implant surgery. In this study, different doses of Ag-implanted TiN/Ag nanomultilayers were prepared on the sandblasting with large grit and acid etching (SLA)-Ti surface using a multiarc ion-plating system and an ion-implantation system, respectively. The physical and chemical properties of the samples were assessed using various techniques, including scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, inductively coupled plasma atomic emission spectrometry, and water contact angle measurements. In addition, the applicability and biosafety of the SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were determined via biocompatibility testing in vivo and in vitro. The results demonstrated that the physical and chemical properties of SLA/1 × 1017-Ag and SLA/1 × 1018-Ag surfaces were different to some extent. However, compared with SLA-Ti, silver-loaded TiN/Ag-modified SLA-Ti surfaces (SLA/1 × 1018-Ag) with enhanced bacteriostatis, osteogenesis, and biocompatibility have great potential for dental applications.
Collapse
Affiliation(s)
- Ming Ma
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Mengli Zhao
- School
of Electronic Engineering, Chaohu University, Anhui 238024, China
| | - Ruotong Ji
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Yi Guo
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Dejun Li
- College
of Physics and Materials Science, Tianjin
Normal University, Tianjin 300387, China
| | - Sujuan Zeng
- Department
of Pediatric dentistry, School and Hospital of Stomatology, Guangdong
Engineering Research Center of Oral Restoration and Reconstruction,
Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative
Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| |
Collapse
|
21
|
Kunrath MF, Gerhardt MDN. Trans-mucosal platforms for dental implants: Strategies to induce muco-integration and shield peri-implant diseases. Dent Mater 2023; 39:846-859. [PMID: 37537095 DOI: 10.1016/j.dental.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES Trans-mucosal platforms connecting the bone-anchored implants to the prosthetic teeth are essential for the success of oral rehabilitation in implant dentistry. This region promotes a challenging environment for the successfulness of dental components due to the transitional characteristics between soft and hard tissues, the presence of bacteria, and mechanical forces. This review explored the most current approaches to modify trans-mucosal components in terms of macro-design and surface properties. METHODS This critical review article revised intensely the literature until July 2023 to demonstrate, discuss, and summarize the current knowledge about marketable and innovative trans-mucosal components for dental implants. RESULTS A large number of dental implant brands have promoted the development of several implant-abutment designs in the clinical market. The progress of abutment designs shows an optimistic reduction of bacteria colonization underlying the implant-abutment gap, although, not completely inhibited. Fundamental and preclinical studies have demonstrated promising outcomes for altered-surface properties targeting antibacterial properties and soft tissue sealing. Nanotopographies, biomimetic coatings, and antibiotic-release properties have been shown to be able to modulate, align, orient soft tissue cells, and induce a reduction in biofilm formation, suggesting superior abilities compared to the current trans-mucosal platforms available on the market. SIGNIFICANCE Future clinical implant-abutments show the possibility to reduce peri-implant diseases and fortify soft tissue interaction with the implant-substrate, defending the implant system from bacteria invasion. However, the absence of technologies translated to commercial stages reveals the need for findings to "bridge the gap" between scientific evidences published and applied science in the industry.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden; School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil; School of Technology, Post-Graduate Program in Materials Technology and Engineering, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Maurício do N Gerhardt
- School of Health and Life Sciences, Post-Graduate Program in Dentistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Huang C, Miao X, Li J, Liang J, Xu J, Wu Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int J Nanomedicine 2023; 18:3141-3155. [PMID: 37333732 PMCID: PMC10276606 DOI: 10.2147/ijn.s404047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Improving the biological sealing around dental abutments could promote the long-term success of implants. Although titanium abutments have a wide range of clinical applications, they incur esthetic risks due to their color, especially in the esthetic zone. Currently, zirconia has been applied as an esthetic alternative material for implant abutments; however, zirconia is purported to be an inert biomaterial. How to improve the biological activities of zirconia has thus become a popular research topic. In this study, we presented a novel self-glazed zirconia (SZ) surface with nanotopography fabricated by additive 3D gel deposition and investigated its soft tissue integration capability compared to that of clinically used titanium and polished conventional zirconia surfaces. Materials and Methods Three groups of disc samples were prepared for in vitro study and the three groups of abutment samples were prepared for in vivo study. The surface topography, roughness, wettability and chemical composition of the samples were examined. Moreover, we analyzed the effect of the three groups of samples on protein adsorption and on the biological behavior of human gingival keratinocytes (HGKs) and human gingival fibroblasts (HGFs). Furthermore, we conducted an in vivo study in which the bilateral mandibular anterior teeth of rabbits were extracted and replaced with implants and corresponding abutments. Results The surface of SZ showed a unique nanotopography with nm range roughness and a greater ability to absorb protein. The promoted expression of adhesion molecules in both HGKs and HGFs was observed on the SZ surface compared to the surfaces of Ti and PCZ, while the cell viability and proliferation of HGKs and the number of HGFs adhesion were not significant among all groups. In vivo results showed that the SZ abutment formed strong biological sealing at the abutment-soft tissue interface and exhibited markedly more hemidesmosomes when observed with a transmission electron microscope. Conclusion These results demonstrated that the novel SZ surface with nanotopography promoted soft tissue integration, suggesting its promising application as a zirconia surface for the dental abutment.
Collapse
Affiliation(s)
- Chaoyi Huang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Xinchao Miao
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jiang Li
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Jieyi Liang
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Junxi Xu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| | - Zhe Wu
- Department of Prosthodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
23
|
Zhi Q, Zhang Y, Wei J, Lv X, Qiao S, Lai H. Cell Responses to Calcium- and Protein-Conditioned Titanium: An In Vitro Study. J Funct Biomater 2023; 14:jfb14050253. [PMID: 37233363 DOI: 10.3390/jfb14050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Dental implants have become the leading choice for patients who lose teeth; however, dental implantation is challenged by peri-implant infections. Here, calcium-doped titanium was fabricated by the combinational use of thermal evaporation and electron beam evaporation in a vacuum; then, the material was immersed in a calcium-free phosphate-buffered saline solution containing human plasma fibrinogen and incubated at 37 °C for 1 h, creating calcium- and protein-conditioned titanium. The titanium contained 12.8 ± 1.8 at.% of calcium, which made the material more hydrophilic. Calcium release by the material during protein conditioning was able to change the conformation of the adsorbed fibrinogen, which acted against the colonization of peri-implantitis-associated pathogens (Streptococcus mutans, UA 159, and Porphyromonas gingivalis, ATCC 33277), while supporting the adhesion and growth of human gingival fibroblasts (hGFs). The present study confirms that the combination of calcium-doping and fibrinogen-conditioning is a promising pathway to meeting the clinical demand for suppressing peri-implantitis.
Collapse
Affiliation(s)
- Qiang Zhi
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200125, China
| | - Yuehua Zhang
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200125, China
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jianxu Wei
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200125, China
| | - Xiaolei Lv
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200125, China
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200125, China
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200125, China
| |
Collapse
|
24
|
Zhang C, Zeng C, Wang Z, Zeng T, Wang Y. Optimization of stress distribution of bone-implant interface (BII). BIOMATERIALS ADVANCES 2023; 147:213342. [PMID: 36841109 DOI: 10.1016/j.bioadv.2023.213342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Many studies have found that the threshold of occlusal force tolerated by titanium-based implants is significantly lower than that of natural teeth due to differences in biomechanical mechanisms. Therefore, implants are considered to be susceptible to occlusal trauma. In clinical practice, many implants have shown satisfactory biocompatibility, but the balance between biomechanics and biofunction remains a huge clinical challenge. This paper comprehensively analyzes and summarizes various stress distribution optimization methods to explore strategies for improving the resistance of the implants to adverse stress. Improving stress resistance reduces occlusal trauma and shortens the gap between implants and natural teeth in occlusal function. The study found that: 1) specific implant-abutment connection design can change the force transfer efficiency and force conduction direction of the load at the BII; 2) reasonable implant surface structure and morphological character design can promote osseointegration, maintain alveolar bone height, and reduce the maximum effective stress at the BII; and 3) the elastic modulus of implants matched to surrounding bone tissue can reduce the stress shielding, resulting in a more uniform stress distribution at the BII. This study concluded that the core BII stress distribution optimization lies in increasing the stress distribution area and reducing the local stress peak value at the BII. This improves the biomechanical adaptability of the implants, increasing their long-term survival rate.
Collapse
Affiliation(s)
- Chunyu Zhang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China.
| | - Chunyu Zeng
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Zhefu Wang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Ting Zeng
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China
| | - Yuehong Wang
- Xiangya Stomatological Hospital, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Xiangya School of Stomatology, Central South University, No. 72 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China; Hunan 3D Printing Engineering Research Center of Oral Care, No. 64 Xiangya Street, Kaifu District, Changsha, 410008, Hunan, China.
| |
Collapse
|
25
|
Areid N, Riivari S, Abushahba F, Shahramian K, Närhi T. Influence of Surface Characteristics of TiO 2 Coatings on the Response of Gingival Cells: A Systematic Review of In Vitro Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2533. [PMID: 36984413 PMCID: PMC10056999 DOI: 10.3390/ma16062533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
The soft tissue-implant interface requires the formation of epithelium and connective tissue seal to hinder microbial infiltration and prevent epithelial down growth. Nanoporous titanium dioxide (TiO2) surface coatings have shown good potential for promoting soft tissue attachment to implant surfaces. However, the impact of their surface properties on the biological response of gingival cells needs further investigation. This systematic review aimed to investigate the cellular behavior of gingival cells on TiO2-implant abutment coatings based on in vitro studies. The review was performed to answer the question: "How does the surface characteristic of TiO2 coatings influence the gingival cell response in in vitro studies?". A search in MEDLINE/PubMed and the web of science databases from 1990 to 2022 was performed using keywords. A quality assessment of the studies selected was performed using the SciRAP method. A total of 11 publications were selected from the 289 studies that fulfilled the inclusion criteria. The mean reporting and methodologic quality SciRAP scores were 82.7 ± 6.4/100 and 87 ± 4.2/100, respectively. Within the limitations of this in vitro systematic review, it can be concluded that the TiO2 coatings with smooth nano-structured surface topography and good wettability improve gingival cell response compared to non-coated surfaces.
Collapse
Affiliation(s)
- Nagat Areid
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Sini Riivari
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Faleh Abushahba
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
| | - Khalil Shahramian
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
- Turku Clinical Biomaterials Center (TCBC), University of Turku, FI-20014 Turku, Finland
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, FI-20014 Turku, Finland
- Turku Clinical Biomaterials Center (TCBC), University of Turku, FI-20014 Turku, Finland
- Oral Health Care, Wellbeing services county of Southwest Finland, P.O. Box 52, FIN-20521 Turku, Finland
| |
Collapse
|
26
|
Li Z, Ruan C, Niu X. Collagen-based bioinks for regenerative medicine: Fabrication, application and prospective. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
27
|
Chen S, Huang Z, Visalakshan RM, Liu H, Bachhuka A, Wu Y, Dabare PRL, Luo P, Liu R, Gong Z, Xiao Y, Vasilev K, Chen Z, Chen Z. Plasma polymerized bio-interface directs fibronectin adsorption and functionalization to enhance "epithelial barrier structure" formation via FN-ITG β1-FAK-mTOR signaling cascade. Biomater Res 2022; 26:88. [PMID: 36572920 PMCID: PMC9791785 DOI: 10.1186/s40824-022-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transepithelial medical devices are increasing utilized in clinical practices. However, the damage of continuous natural epithelial barrier has become a major risk factor for the failure of epithelium-penetrating implants. How to increase the "epithelial barrier structures" (focal adhesions, hemidesmosomes, etc.) becomes one key research aim in overcoming this difficulty. Directly targeting the in situ "epithelial barrier structures" related proteins (such as fibronectin) absorption and functionalization can be a promising way to enhance interface-epithelial integration. METHODS Herein, we fabricated three plasma polymerized bio-interfaces possessing controllable surface chemistry. Their capacity to adsorb and functionalize fibronectin (FN) from serum protein was compared by Liquid Chromatography-Tandem Mass Spectrometry. The underlying mechanisms were revealed by molecular dynamics simulation. The response of gingival epithelial cells regarding the formation of epithelial barrier structures was tested. RESULTS Plasma polymerized surfaces successfully directed distinguished protein adsorption profiles from serum protein pool, in which plasma polymerized allylamine (ppAA) surface favored adsorbing adhesion related proteins and could promote FN absorption and functionalization via electrostatic interactions and hydrogen bonds, thus subsequently activating the ITG β1-FAK-mTOR signaling and promoting gingival epithelial cells adhesion. CONCLUSION This study offers an effective perspective to overcome the current dilemma of the inferior interface-epithelial integration by in situ protein absorption and functionalization, which may advance the development of functional transepithelial biointerfaces. Tuning the surface chemistry by plasma polymerization can control the adsorption of fibronectin and functionalize it by exposing functional protein domains. The functionalized fibronectin can bind to human gingival epithelial cell membrane integrins to activate epithelial barrier structure related signaling pathway, which eventually enhances the formation of epithelial barrier structure.
Collapse
Affiliation(s)
- Shoucheng Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuwei Huang
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | | | - Haiwen Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Akash Bachhuka
- grid.410367.70000 0001 2284 9230Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), Tarragona, 43003 Spain
| | - You Wu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Panthihage Ruvini L. Dabare
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Pu Luo
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Runheng Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuohong Gong
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Yin Xiao
- grid.1024.70000000089150953Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Australia
| | - Krasimir Vasilev
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Zhuofan Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zetao Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| |
Collapse
|
28
|
Analysis of the physical, mechanical and morphological properties of polyethylene terephthalate polymer in the manufacture of dentistry prosthetic components. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Martinez-Mondragon M, Urriolagoitia-Sosa G, Romero-Ángeles B, Maya-Anaya D, Martínez-Reyes J, Gallegos-Funes FJ, Urriolagoitia-Calderón GM. Numerical Analysis of Zirconium and Titanium Implants under the Effect of Critical Masticatory Load. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7843. [PMID: 36363435 PMCID: PMC9657110 DOI: 10.3390/ma15217843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Dental implants have become an alternative to replace the teeth of people suffering from edentulous and meet the physiological and morphological characteristics (recovering 95% of the chewing function). The evolution and innovation of biomaterials for dental implants have had a trajectory that dates back to prehistory, where dental pieces were replaced by ivory or seashells, to the present day, where they are replaced by metallic materials such as titanium or ceramics such as zirconium or fiberglass. The numerical evaluation focuses on comparing the stress distribution and general displacement between different dental implants and a healthy tooth when applying a force of 850 N. For the analysis, a model of the anatomical structure was developed of a healthy tooth considering three essential parts of the tooth (enamel, dentin, and pulp). The tooth biomodel was established through computed tomography. Three dental implant models were considered by changing the geometry of the abutment. A structural simulation was carried out by applying the finite element method (FEM). In addition, the material considered for the analyses was zirconium oxide (ZrO2), which was compared against titanium alloy (Ti6Al4V). The analyses were considered with linear, isotropic, and homogeneous properties. The variables included in the biomodeling were the modulus of elasticity, Poisson's ratio, density, and elastic limit. The results obtained from the study indicated a significant difference in the biomechanical behavior of the von Mises forces and the displacement between the healthy tooth and the titanium and zirconium implant models. However, the difference between the titanium implant and the zirconium implant is minimal because one is more rigid, and the other is more tenacious.
Collapse
|
30
|
Sun H, Yu P, Peng X, Meng L, Qin M, Xu X, Li J. Inspired by the Periodontium: A Universal Bacteria-Defensive Hydrogel for Preventing Percutaneous Device-Related Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50424-50433. [PMID: 36282568 DOI: 10.1021/acsami.2c15478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Percutaneous device-related infection has greatly shortened the service period of devices and seriously reduced the quality of life of patients. Bacteria are one of the main pathogenic factors and cannot be effectively and conveniently eradicated by traditional strategies (e.g., construct coatings and introduce antibiotics), due to the complex interface among medical devices, surrounding tissue, and colonizing bacteria. Inspired by the periodontium, a universal bacteria-defensive hydrogel adapting to the complicated interface is fabricated by introducing phenol-amine chemistry to a polymeric matrix of N-hydroxyethyl acrylamide (HPC hydrogels). The HPC hydrogels with excellent toughness (2.1 MJ/m3), adhesion (10.2 and 13.2 kPa for pigskin and Ti-6Al-4V alloy, respectively), and antibacterial property (up to 99.9% for both Escherichia coli and Staphylococcus aureus) contributed to the innate microbe barrier via sealing the tissue-device interface and adaptive defense to eradicate bacteria. Meanwhile, bacterial invasion experiments demonstrate HPC hydrogels possess both a bacteria-defensive property (up to 24 h) and cell-protecting function at the same time. Furthermore, the biocompatibility of HPC hydrogels is verified in tests for in vitro cytotoxicity and in vivo irritation. Hence, the designed HPC hydrogels are considered as an emerging and universal candidate for preventing bacterial infection and can protect the deep tissue around a percutaneous device.
Collapse
Affiliation(s)
- Hui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, China
| | - Lingzhuang Meng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610061, China
| |
Collapse
|