1
|
Zhang J, Li M, Liu M, Yu Q, Ge D, Zhang J. Metal-Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:797. [PMID: 38727391 PMCID: PMC11085591 DOI: 10.3390/nano14090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Nanomaterials, with unique physical, chemical, and biocompatible properties, have attracted significant attention as an emerging active platform in cancer diagnosis and treatment. Amongst them, metal-organic framework (MOF) nanostructures are particularly promising as a nanomedicine due to their exceptional surface functionalities, adsorption properties, and organo-inorganic hybrid characteristics. Furthermore, when bioactive substances are integrated into the structure of MOFs, these materials can be used as anti-tumor agents with superior performance compared to traditional nanomaterials. In this review, we highlight the most recent advances in MOFs-based materials for tumor therapy, including their application in cancer treatment and the underlying mechanisms.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meiyu Li
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Maosong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Dengfeng Ge
- Shengli Oilfield Central Hospital, 31 Ji’nan Rd, Dongying 257034, China;
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Yu Q, Li M, Zhang J, Liu H, Zhang L, Li S, Ge D, Zhang J. Magnetostrictive-piezocatalytic CoFe 2O 4@UiO-66 nanohybrid and its potential for deep-seated tumor treatment. Chem Commun (Camb) 2024; 60:4463-4466. [PMID: 38563776 DOI: 10.1039/d4cc00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Magnetostrictive CoFe2O4 (CFO) nanoparticles were encapsulated within a UiO-66 metal-organic-framework layer to form a CFO@UiO-66 nanohybrid. The deforming of CFO, in response to a high-frequency AC magnetic field, initiates the piezocatalytic property of UiO-66 to generate ˙OH radicals, which can kill cancer cells buried in thick tissues, showcasing bright potential for deep-seated tumor treatment.
Collapse
Affiliation(s)
- Qian Yu
- School of Life Sciences, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Meiyu Li
- School of Life Sciences, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Hong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Long Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Shun Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| | - Dengfeng Ge
- Shengli Oilfield Central Hospital, 31 Ji'nan Rd, Dongying, China.
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Liu Y, Zhao S, Li Y, Huang J, Yang X, Wang J, Tao CA. Mechanically Enhanced Detoxification of Chemical Warfare Agent Simulants by a Two-Dimensional Piezoresponsive Metal-Organic Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:559. [PMID: 38607094 PMCID: PMC11013765 DOI: 10.3390/nano14070559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/13/2024]
Abstract
Chemical warfare agents (CWAs) refer to toxic chemical substances used in warfare. Recently, CWAs have been a critical threat for public safety due to their high toxicity. Metal-organic frameworks have exhibited great potential in protecting against CWAs due to their high crystallinity, stable structure, large specific surface area, high porosity, and adjustable structure. However, the metal clusters of most reported MOFs might be highly consumed when applied in CWA hydrolysis. Herein, we fabricated a two-dimensional piezoresponsive UiO-66-F4 and subjected it to CWA simulant dimethyl-4-nitrophenyl phosphate (DMNP) detoxification under sonic conditions. The results show that sonication can effectively enhance the removal performance under optimal conditions; the reaction rate constant k was upgraded 45% by sonication. Moreover, the first-principle calculation revealed that the band gap could be further widened with the application of mechanical stress, which was beneficial for the generation of 1O2, thus further upgrading the detoxification performance toward DMNP. This work demonstrated that mechanical vibration could be introduced to CWA protection, but promising applications are rarely reported.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianfang Wang
- College of Science, National University of Defense Technology, Changsha 430083, China; (Y.L.); (S.Z.); (Y.L.); (J.H.); (X.Y.)
| | - Cheng-an Tao
- College of Science, National University of Defense Technology, Changsha 430083, China; (Y.L.); (S.Z.); (Y.L.); (J.H.); (X.Y.)
| |
Collapse
|
4
|
Wang S, Liu Y, Quan C, Luan S, Shi H, Wang L. A metal-organic framework-integrated composite for piezocatalysis-assisted tumour therapy: design, related mechanisms, and recent advances. Biomater Sci 2024; 12:896-906. [PMID: 38234222 DOI: 10.1039/d3bm01944f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
With the growing need for more effective tumour treatment, piezocatalytic therapy has emerged as a promising approach due to its distinctive capacities to generate ROS through stress induction and regulate the hypoxic state of the TME. MOF-based piezocatalysts not only possess the benefits of piezocatalysis but also exhibit several advantages associated with MOFs, such as tunable pore size, large specific surface area, and good biocompatibility. Therefore, they are expected to become a powerful promoter of piezocatalytic therapy. This review elaborates on the fundamental principles of piezocatalysis and summarises recent advances in the piezocatalytic therapy and combination therapies of tumours, generalising the strategies for constructing piezocatalytic systems based on MOFs. Finally, the challenges confronted and future opportunities for the design and application of piezocatalytic MOF anticancer systems have been discussed.
Collapse
Affiliation(s)
- Shuteng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yifan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhua Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
5
|
Yan Y, Yang B, Ji G, Lu K, Zhao Z, Zhang H, Xia M, Wang F. Tunable zirconium-based metal organic frameworks synthesis for dibutyl phthalate efficient removal: An investigation of adsorption mechanism on macro and micro scale. J Colloid Interface Sci 2023; 650:222-235. [PMID: 37402328 DOI: 10.1016/j.jcis.2023.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
The tunable porous structure of metal organic frameworks (MOFs) plays a crucial role in determining their adsorption performance. In this study, we developed and employed a strategy involving monocarboxylic acid assistance to synthesize a series of zirconium-based MOFs (UiO-66-F4) for the removal of aqueous phthalic acid esters (PAEs). The adsorption mechanisms were investigated by combining batch experiments, characterization and theoretical simulation. By adjusting the affecting factors (i.e., initial concentration, pH values, temperature, contact time and interfering substance), the adsorption behavior was confirmed as a spontaneous and exothermic chemisorption process. The Langmuir model provided a good fit, and the maximum expected adsorption capacity of di-n-butyl phthalate (DnBP) on UiO-66-F4(PA) was calculated to be 530.42 mg·g-1. Besides, through carrying out the molecular dynamics (MD) simulation, the multistage adsorption process in the form of DnBP clusters was revealed on a microcosmic scale. The independent gradient model (IGM) method showed the types of weak interactions of inter-fragments or between DnBP and UiO-66-F4. Furthermore, the synthesized UiO-66-F4 displayed excellent removal efficiency (>96 % after 5 cycles), satisfactory chemical stability and reusability in the regeneration process. Hence, the modulated UiO-66-F4 will be regarded as a promising adsorbent for PAEs separation. This work will provide referential significance in tunable MOFs development and actual applications of PAEs removal.
Collapse
Affiliation(s)
- Yanghao Yan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Baogang Yang
- Shenglong Chemical Industry Company, Zaozhuang 277519, China
| | - Guangwei Ji
- Shenglong Chemical Industry Company, Zaozhuang 277519, China
| | - Keren Lu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiren Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongling Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Cai L, Du J, Han F, Shi T, Zhang H, Lu Y, Long S, Sun W, Fan J, Peng X. Piezoelectric Metal-Organic Frameworks Based Sonosensitizer for Enhanced Nanozyme Catalytic and Sonodynamic Therapies. ACS NANO 2023; 17:7901-7910. [PMID: 37052950 DOI: 10.1021/acsnano.3c01856] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The regulation of electrostatic electric fields through electrical stimulation is an efficient method to increase the catalytic activity of nanozymes and improve the therapeutic effect of nanozyme catalytic therapy. Piezoelectric materials, which are capable of generating a built-in electric field under ultrasound (US), not only improve the activity of nanozymes but also enable piezoelectric sonodynamic therapy (SDT). In this study, a sonosensitizer based on a Hf-based metal-organic framework (UIO-66) and Au nanoparticles (NPs) was produced. Under US irradiation, UIO-66 can generate a built-in electric field inside the materials, which promotes electron-hole separation and produces reactive oxygen species (ROS). The introduction of Au NPs facilitated the electron transfer, which inhibited the recombination of the electron-hole pairs and improved the piezoelectric properties of UIO-66. The value of the piezoelectric constant (d33) increased from 71 to 122 pmV-1 after the deposition of Au NPs. In addition, the intrinsic catalase and peroxidase activities of the Au NPs were increased 2-fold after the stimulation from the built-in electric field induced through US exposure. In vivo and in vitro experiments revealed that the proposed sonosensitizer can kill cancer cells and inhibit tumor growth in mice through the enhanced piezoelectric SDT and nanozyme catalytic therapy. The piezoelectric sensitizer proposed in this work proved to be an efficient candidate that can be used for multiple therapeutic modalities in tumor therapy.
Collapse
Affiliation(s)
- Lihan Cai
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, Zhejiang 315016, P. R. China
| | - Fuping Han
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Tiancong Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Han Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yang Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Saran Long
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, Zhejiang 315016, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, Zhejiang 315016, P. R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, 26 Yucai Road, Jiangbei District, Ningbo, Zhejiang 315016, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
7
|
Li Y, Li Z, Lin X, Lv H, Zhu M. Modulating the metal center in MIL-101 for the piezoelectric catalytic synthesis of hydrogen peroxide. Chem Commun (Camb) 2023; 59:5749-5752. [PMID: 37092710 DOI: 10.1039/d3cc01196h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Modulation of metal centers is a promising strategy to boost catalytic performance. Two structurally identical MOFs with different metal centers, namely MIL-101(Cr) and MIL-101(Fe), were synthesized. MIL-101(Cr) exhibits superior H2O2 yield due to Cr's electron-donating ability. This work helps in developing the rational design and optimization of MOF catalysts for catalytic reactions.
Collapse
Affiliation(s)
- Yatai Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Zhi Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Xuecong Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Hao Lv
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
8
|
Dong S, Wang L, Lou W, Shi Y, Cao Z, Zhang Y, Sun J. Bi-MOFs with two different morphologies promoting degradation of organic dye under simultaneous photo-irradiation and ultrasound vibration treatment. ULTRASONICS SONOCHEMISTRY 2022; 91:106223. [PMID: 36375373 PMCID: PMC9667312 DOI: 10.1016/j.ultsonch.2022.106223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
For the first time, piezocatalysis activity has been observed in bismuth-based MOFs (ultrasound vibration treatment) with two different morphologies, namely FCAU-17 (flakes) and CAU-17 (rods). CAU-17 and FCAU-17 were synthesized by solvothermal and ultrasonic methods, respectively, with the same organic ligand (1,3,5-benzenetricarboxylic acid) and metal salt (Bi(NO3)3·5H2O). Among these, the apparent rate constant k of CAU-17 in piezo-photocatalysis is 3.9 × 10-2 min-1, which is ∼3.9 and ∼ 1.5 times of those in photocatalysis and piezocatalysis, respectively. CAU-17 showed much high piezo-photocatalytic activity during degradation of RhB. Efficiently coupling between piezocatalysis and photocatalysis has been realized in rod-like CAU-17 (ultrasound vibration treatment). Our results provide a new strategy to improve catalytic performance of Bi MOFs through an efficient synergistic piezo-photocatalysis approach for environmental remediation.
Collapse
Affiliation(s)
- Shanghai Dong
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot 010051, People's Republic of China
| | - Liying Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot 010051, People's Republic of China.
| | - Weiyi Lou
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot 010051, People's Republic of China
| | - Yunxin Shi
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot 010051, People's Republic of China
| | - Zhenzhu Cao
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot 010051, People's Republic of China
| | - Yongfeng Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot 010051, People's Republic of China
| | - Junmin Sun
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Efficient Recycle Utilization for Coal-Based Waste, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot 010051, People's Republic of China
| |
Collapse
|
9
|
He J, Yi Z, Chen Q, Li Z, Hu J, Zhu M. Piezoelectric polarization of MIL-100(Fe) by harvesting mechanical energy for cocatalyst-free H2 evolution. Chem Commun (Camb) 2022; 58:10723-10726. [DOI: 10.1039/d2cc03976a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To suit the emergency of a new strategy for hydrogen (H2) evolution, a metal–organic framework (MIL-100(Fe)) is applied in the piezoelectric-driven process for catalytic H2 generation. Herein, MIL-100(Fe) was firstly...
Collapse
|