1
|
Yue H, Sun S, Wang R, Ma X, Shen S, Luo Y, Ma X, Wu T, Li S, Yang Z, Gong Y. Study on the mechanism of salt relief and growth promotion of Enterobacter cloacae on cotton. BMC PLANT BIOLOGY 2023; 23:656. [PMID: 38114925 PMCID: PMC10729352 DOI: 10.1186/s12870-023-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
AIMS In-depth studies on plant ion uptake and plant growth-promoting rhizobacteria (PGPR) at the molecular level will help to further reveal the effects of PGPR on plants and their interaction mechanisms under salt stress. METHODS Cotton was inoculated with a PGPR-Enterobacter cloacae Rs-35, and the ion uptake capacity, membrane transporter protein activity, and expression of key genes were determined under salt stress. Changes in the endogenous hormone content of cotton were also determined. Further, the genome-wide metabolic pathway annotation of E. cloacae Rs-35 and its differential enrichment pathway analysis of multi-omics under salinity environments were performed. RESULTS In a pot experiment of saline-alkali soil, E. cloacae Rs-35-treated cotton significantly increased its uptake of K+ and Ca2+ and decreased uptake of Na+, elevated the activity of the H+-ATPase, and increased the sensitivity of the Na+/H+ reverse transporter protein on the vesicle membrane. Meanwhile, inoculation with E. cloacae Rs-35 could promote cotton to maintain the indole-3-acetic acid (IAA) content under salt stress. Genome-wide annotation showed that E. cloacae Rs-35 was respectively annotated to 31, 38, and 130 related genes in osmotic stress, phytohormone and organic acid metabolism, and ion uptake metabolic pathway. Multi-omics differences analysis showed that E. cloacae Rs-35 were enriched to tryptophan metabolism, multiple amino acid biosynthesis, carbon and glucose synthesis, and oxidative phosphorylation metabolic pathways at the transcriptome, proteome, and metabolome. CONCLUSION E. cloacae Rs-35 can promote cotton balance cell ion concentration, stabilize intracellular IAA changes, stimulate induction of systemic tolerance, and promote the growth of cotton plants under salt stress.
Collapse
Affiliation(s)
- Haitao Yue
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China.
| | - Shuwen Sun
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ruiqi Wang
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xiaoyun Ma
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Shiwei Shen
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Yiqian Luo
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Xiaoli Ma
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Ting Wu
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Shuang Li
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Zhengyang Yang
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| | - Yuxi Gong
- School of Future Technology, Xinjiang University, Urumqi, 830017, People's Republic of China
| |
Collapse
|
2
|
Li W, Luna-Flores CH, Anangi R, Zhou R, Tan X, Jessen M, Liu L, Zhou R, Zhang T, Gissibl A, Cullen PJ, Ostrikov KK, Speight RE. Oxidative stress induced by plasma-activated water stimulates astaxanthin production in Phaffia rhodozyma. BIORESOURCE TECHNOLOGY 2023; 369:128370. [PMID: 36423765 DOI: 10.1016/j.biortech.2022.128370] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Astaxanthin is used extensively in the nutraceutical, aquaculture, and cosmetic industries. The current market necessitates higher astaxanthin production from Phaffia rhodozyma (P. rhodozyma) due to its higher cost compared to chemical synthesis. In this study, a bubble discharge reactor was developed to generate plasma-activated water (PAW) to produce PAW-made yeast malt (YM) medium. Due to oxidative stress induced by PAW, strains cultured in 15 and 30 min-treated PAW-made medium produced 7.9 ± 1.2 % and 12.6 ± 1.4 % more carotenoids with 15.5 ± 3.3 % and 22.1 ± 1.3 % more astaxanthin, respectively. Reactive oxygen species (ROS) assay results showed that ROS generated by plasma-water interactions elevated intracellular ROS levels. Proteomic analysis revealed increased expression of proteins involved in the cellular response to oxidative stress as well as carotenoid biosynthesis, both of which contribute to higher yields of astaxanthin. Overall, this study supports the potential of PAW to increase astaxanthin yields for industrial-scale production.
Collapse
Affiliation(s)
- Wenshao Li
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Carlos H Luna-Flores
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Raveendra Anangi
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Renwu Zhou
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; School of Chemical and Biomolecular Engineering, The University of Sydney (USYD), Sydney, NSW 2006, Australia; State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, People's Republic of China.
| | - Xinle Tan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| | - Marius Jessen
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Lian Liu
- Q-MAP, Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland (UQ), Brisbane, Queensland 4000, Australia
| | - Rusen Zhou
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; School of Chemical and Biomolecular Engineering, The University of Sydney (USYD), Sydney, NSW 2006, Australia
| | - Tianqi Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney (USYD), Sydney, NSW 2006, Australia
| | - Alexander Gissibl
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Patrick J Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney (USYD), Sydney, NSW 2006, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Robert E Speight
- School of Biology and Environmental Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| |
Collapse
|
3
|
An extended catalogue of ncRNAs in Streptomyces coelicolor reporting abundant tmRNA, RNase-P RNA and RNA fragments derived from pre-ribosomal RNA leader sequences. Arch Microbiol 2022; 204:582. [PMID: 36042049 DOI: 10.1007/s00203-022-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Streptomyces coelicolor is a model organism for studying streptomycetes. This genus possesses relevant medical and economical roles, because it produces many biologically active metabolites of pharmaceutical interest, including the majority of commercialized antibiotics. In this bioinformatic study, the transcriptome of S. coelicolor has been analyzed to identify novel RNA species and quantify the expression of both annotated and novel transcripts in solid and liquid growth medium cultures at different times. The major characteristics disclosed in this study are: (i) the diffuse antisense transcription; (ii) the great abundance of transfer-messenger RNAs (tmRNA); (iii) the abundance of rnpB transcripts, paramount for the RNase-P complex; and (iv) the presence of abundant fragments derived from pre-ribosomal RNA leader sequences of unknown biological function. Overall, this study extends the catalogue of ncRNAs in S. coelicolor and suggests an important role of non-coding transcription in the regulation of biologically active molecule production.
Collapse
|
4
|
Del Carratore F, Hanko EK, Breitling R, Takano E. Biotechnological application of Streptomyces for the production of clinical drugs and other bioactive molecules. Curr Opin Biotechnol 2022; 77:102762. [PMID: 35908316 DOI: 10.1016/j.copbio.2022.102762] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
Streptomyces is one of the most relevant genera in biotechnology, and its rich secondary metabolism is responsible for the biosynthesis of a plethora of bioactive compounds, including several clinically relevant drugs. The use of Streptomyces species for the manufacture of natural products has been established for more than half a century; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionised the optimisation of Streptomyces as cell factories and drastically expanded the biotechnological potential of these bacteria. Here, we illustrate the most exciting advances reported in the past few years, with a particular focus on the approaches significantly improving the biotechnological capacity of Streptomyces to produce clinical drugs and other valuable secondary metabolites.
Collapse
Affiliation(s)
- Francesco Del Carratore
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Erik Kr Hanko
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| |
Collapse
|