1
|
Pfeiffer P, Nilsson J, Gallud A, Baladi T, Le HN, Bood M, Lemurell M, Dahlén A, Grøtli M, Esbjörner E, Wilhelmsson L. Metabolic RNA labeling in non-engineered cells following spontaneous uptake of fluorescent nucleoside phosphate analogues. Nucleic Acids Res 2024; 52:10102-10118. [PMID: 39162218 PMCID: PMC11417403 DOI: 10.1093/nar/gkae722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
RNA and its building blocks play central roles in biology and have become increasingly important as therapeutic agents and targets. Hence, probing and understanding their dynamics in cells is important. Fluorescence microscopy offers live-cell spatiotemporal monitoring but requires labels. We present two fluorescent adenine analogue nucleoside phosphates which show spontaneous uptake and accumulation in cultured human cells, likely via nucleoside transporters, and show their potential utilization as cellular RNA labels. Upon uptake, one nucleotide analogue, 2CNqAXP, localizes to the cytosol and the nucleus. We show that it could then be incorporated into de novo synthesized cellular RNA, i.e. it was possible to achieve metabolic fluorescence RNA labeling without using genetic engineering to enhance incorporation, uptake-promoting strategies, or post-labeling through bio-orthogonal chemistries. By contrast, another nucleotide analogue, pAXP, only accumulated outside of the nucleus and was rapidly excreted. Consequently, this analogue did not incorporate into RNA. This difference in subcellular accumulation and retention results from a minor change in nucleobase chemical structure. This demonstrates the importance of careful design of nucleoside-based drugs, e.g. antivirals to direct their subcellular localization, and shows the potential of fine-tuning fluorescent base analogue structures to enhance the understanding of the function of such drugs.
Collapse
Affiliation(s)
- Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- LanteRNA (Stealth Labels Biotech AB), c/o Chalmers Ventures AB, Vera Sandbergs allé 8, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-43181 Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mattias Bood
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| |
Collapse
|
2
|
Choi Y, Um B, Na Y, Kim J, Kim JS, Kim VN. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol Cell 2024; 84:1764-1782.e10. [PMID: 38593806 DOI: 10.1016/j.molcel.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
mRNAs continually change their protein partners throughout their lifetimes, yet our understanding of mRNA-protein complex (mRNP) remodeling is limited by a lack of temporal data. Here, we present time-resolved mRNA interactome data by performing pulse metabolic labeling with photoactivatable ribonucleoside in human cells, UVA crosslinking, poly(A)+ RNA isolation, and mass spectrometry. This longitudinal approach allowed the quantification of over 700 RNA binding proteins (RBPs) across ten time points. Overall, the sequential order of mRNA binding aligns well with known functions, subcellular locations, and molecular interactions. However, we also observed RBPs with unexpected dynamics: the transcription-export (TREX) complex recruited posttranscriptionally after nuclear export factor 1 (NXF1) binding, challenging the current view of transcription-coupled mRNA export, and stress granule proteins prevalent in aged mRNPs, indicating roles in late stages of the mRNA life cycle. To systematically identify mRBPs with unknown functions, we employed machine learning to compare mRNA binding dynamics with Gene Ontology (GO) annotations. Our data can be explored at chronology.rna.snu.ac.kr.
Collapse
Affiliation(s)
- Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Buyeon Um
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Yu NJ, Dai W, Li A, He M, Kleiner RE. Cell type-specific translational regulation by human DUS enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565399. [PMID: 37965204 PMCID: PMC10635104 DOI: 10.1101/2023.11.03.565399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dihydrouridine is an abundant and conserved modified nucleoside present on tRNA, but characterization and functional studies of modification sites and associated DUS writer enzymes in mammals is lacking. Here we use a chemical probing strategy, RNABPP-PS, to identify 5-chlorouridine as an activity-based probe for human DUS enzymes. We map D modifications using RNA-protein crosslinking and chemical transformation and mutational profiling to reveal D modification sites on human tRNAs. Further, we knock out individual DUS genes in two human cell lines to investigate regulation of tRNA expression levels and codon-specific translation. We show that whereas D modifications are present across most tRNA species, loss of D only perturbs the translational function of a subset of tRNAs in a cell type-specific manner. Our work provides powerful chemical strategies for investigating D and DUS enzymes in diverse biological systems and provides insight into the role of a ubiquitous tRNA modification in translational regulation.
Collapse
|
4
|
Shu X, Huang C, Li T, Cao J, Liu J. a 6A-seq: N 6-allyladenosine-based cellular messenger RNA metabolic labelling and sequencing. FUNDAMENTAL RESEARCH 2023; 3:657-664. [PMID: 38933292 PMCID: PMC11197751 DOI: 10.1016/j.fmre.2023.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 06/28/2024] Open
Abstract
The integration of RNA metabolic labelling by nucleoside analogues with high-throughput RNA sequencing has been harnessed to study RNA dynamics. The immunoprecipitation purification or chemical pulldown technique is generally required to enrich the analogue-labelled RNAs. Here we developed an a6A-seq method, which takes advantage of N6-allyladenosine (a6A) metabolic labelling on cellular mRNAs and profiles them in an immunoprecipitation-free and mutation-based manner. a6A plays a role as a chemical sequencing tag in that the iodination of a6A in mRNAs results in 1,N 6-cyclized adenosine (cyc-A), which induces base misincorporation during RNA reverse transcription, thus making a6A-labelled mRNAs detectable by sequencing. A nucleic acid melting assay was utilized to investigate why cyc-A prefers to be paired with guanine. a6A-seq was utilized to study cellular gene expression changes under a methionine-free stress condition. Compared with regular RNA-seq, a6A-seq could more sensitively detect the change of mRNA production over a time scale. The experiment of a6A-containing mRNA immunoprecipitation followed by qPCR successfully validated the high-throughput a6A-seq data. Together, our results show a6A-seq is an effective tool to study RNA dynamics.
Collapse
Affiliation(s)
- Xiao Shu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Chenyang Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Tengwei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Jie Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | - Jianzhao Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
- Life Sciences Institute, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| |
Collapse
|
5
|
Kleiner RE. Chemical Approaches To Investigate Post-transcriptional RNA Regulation. ACS Chem Biol 2023; 18:1684-1697. [PMID: 37540831 PMCID: PMC11031734 DOI: 10.1021/acschembio.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
RNA plays a central role in biological processes, and its activity is regulated by a host of diverse chemical and biochemical mechanisms including post-transcriptional modification and interactions with RNA-binding proteins. Here, we describe our efforts to illuminate RNA biology through the application of chemical tools, focusing on post-transcriptional regulatory mechanisms. We describe the development of an activity-based protein profiling approach for discovery and characterization of RNA-modifying enzymes. Next, we highlight novel approaches for RNA imaging based upon metabolic labeling with modified nucleosides and engineering of the nucleotide salvage pathway. Finally, we discuss profiling RNA-protein interactions using small molecule-dependent RNA editing and synthetic photo-cross-linkable oligonucleotide probes. Our work provides enabling technologies for deciphering the complexity of RNA and its diverse functions in biology.
Collapse
Affiliation(s)
- Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA 08544
| |
Collapse
|
6
|
Gupta M, Wang J, Garfio CM, Vandewalle A, Spitale RC. Cycloaddition enabled mutational profiling of 5-vinyluridine in RNA. Chem Commun (Camb) 2023; 59:3257-3260. [PMID: 36815680 PMCID: PMC10089805 DOI: 10.1039/d3cc00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We report the detection of 5-vinyluridine (5-VUrd) in RNA at single nucleotide resolution via mutational profiling. Maleimide cycloadducts with 5-VUrd in RNA cause a stop in primer extension during reverse transcription, and the full-length cDNA product from reverse transcription contains misincorporation across the cycloadduct site.
Collapse
Affiliation(s)
- Mrityunjay Gupta
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
| | - Jingtian Wang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chely M Garfio
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Abigail Vandewalle
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Wang D, Shalamberidze A, Arguello AE, Purse BW, Kleiner RE. Live-Cell RNA Imaging with Metabolically Incorporated Fluorescent Nucleosides. J Am Chem Soc 2022; 144:14647-14656. [PMID: 35930766 PMCID: PMC9940818 DOI: 10.1021/jacs.2c04142] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence imaging is a powerful method for probing macromolecular dynamics in biological systems; however, approaches for cellular RNA imaging are limited to the investigation of individual RNA constructs or bulk RNA labeling methods compatible primarily with fixed samples. Here, we develop a platform for fluorescence imaging of bulk RNA dynamics in living cells. We show that fluorescent bicyclic and tricyclic cytidine analogues can be metabolically incorporated into cellular RNA by overexpression of uridine-cytidine kinase 2. In particular, metabolic feeding with the tricyclic cytidine-derived nucleoside tC combined with confocal imaging enables the investigation of RNA synthesis, degradation, and trafficking at single-cell resolution. We apply our imaging modality to study RNA metabolism and localization during the oxidative stress response and find that bulk RNA turnover is greatly accelerated upon NaAsO2 treatment. Furthermore, we identify cytoplasmic RNA granules containing RNA transcripts generated during oxidative stress that are distinct from canonical stress granules and P-bodies and co-localize with the RNA helicase DDX6. Taken together, our work provides a powerful approach for live-cell RNA imaging and reveals how cells reshape RNA transcriptome dynamics in response to oxidative stress.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ana Shalamberidze
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | | | - Byron W. Purse
- Department of Chemistry and Biochemistry and the Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|