1
|
Chen Y, Lyu M, Zhang Z, Yang F, Li Y. Controlled Preparation of Single-Walled Carbon Nanotubes as Materials for Electronics. ACS CENTRAL SCIENCE 2022; 8:1490-1505. [PMID: 36439305 PMCID: PMC9686200 DOI: 10.1021/acscentsci.2c01038] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) are of particular interest as channel materials for field-effect transistors due to their unique structure and excellent properties. The controlled preparation of SWCNTs that meet the requirement of semiconducting and chiral purity, high density, and good alignment for high-performance electronics has become a key challenge in this field. In this Outlook, we outline the efforts in the preparation of SWCNTs for electronics from three main aspects, structure-controlled growth, selective sorting, and solution assembly, and discuss the remaining challenges and opportunities. We expect that this Outlook can provide some ideas for addressing the existing challenges and inspire the development of SWCNT-based high-performance electronics.
Collapse
Affiliation(s)
- Yuguang Chen
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Min Lyu
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Zeyao Zhang
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Feng Yang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, China
| | - Yan Li
- Beijing
National Laboratory for Molecular Science, Key Laboratory for the
Physics and Chemistry of Nanodevices, State Key Laboratory of Rare
Earth Materials Chemistry and Applications, College of Chemistry and
Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- PKU-HKUST
ShenZhen-HongKong Institution, Shenzhen 518057, People’s
Republic of China
| |
Collapse
|
2
|
Shen Z, Dwyer JH, Sun J, Jinkins KR, Arnold MS, Gopalan P, Van Lehn RC. A simple simulation-derived descriptor for the deposition of polymer-wrapped carbon nanotubes on functionalized substrates. SOFT MATTER 2022; 18:4653-4659. [PMID: 35704922 DOI: 10.1039/d2sm00572g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Controlling the deposition of polymer-wrapped single-walled carbon nanotubes (s-CNTs) onto functionalized substrates can enable the fabrication of s-CNT arrays for semiconductor devices. In this work, we utilize classical atomistic molecular dynamics (MD) simulations to show that a simple descriptor of solvent structure near silica substrates functionalized by a wide variety of self-assembled monolayers (SAMs) can predict trends in the deposition of s-CNTs from toluene. Free energy calculations and experiments indicate that those SAMs that lead to maximum disruption of solvent structure promote deposition to the greatest extent. These findings are consistent with deposition being driven by solvent-mediated interactions that arise from SAM-solvent interactions, rather than direct s-CNT-SAM interactions, and will permit the rapid computational exploration of potential substrate designs for controlling s-CNT deposition and alignment.
Collapse
Affiliation(s)
- Zhizhang Shen
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - Jonathan H Dwyer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| | - Jian Sun
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, USA
| | - Katherine R Jinkins
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, USA
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, USA
| | - Padma Gopalan
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI 53706, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706, USA.
| |
Collapse
|