1
|
Yust BG, Sk AR, Kontsos A, George B. Persistent Luminescent Nanoparticle-Loaded Filaments for Identification of Fabrics in the Visible and Infrared. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1414. [PMID: 39269076 PMCID: PMC11397717 DOI: 10.3390/nano14171414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Persistent luminescent materials are those which can store an amount of energy locally and release it slowly in the form of light. In this work, persistent luminescent nanoparticles (PLNPs) were synthesized and incorporated into polypropylene (PP) filaments at various loading percentages. We investigated the optical properties of both the as-prepared PLNPs and the PLNP-loaded filaments, focusing on any changes resulting from the integration into the filaments. Specifically, visible and near-infrared spectroscopy were used to analyze the emission, excitation, and persistent luminescence of the PLNPs and PLNP-loaded filaments. The tensile properties of the extruded filaments were also investigated through breaking tenacity, elongation at break, Young's modulus, and secant modulus. All PLNP-loaded filaments were shown to exhibit persistent luminescence when exposed to ultraviolet light. While there were no significant changes in the elongation at break or Young's modulus for the loading percentages tested, there was a slight increase in breaking tenacity and a decrease in the secant modulus. Finally, the filaments were shown to maintain their optical properties and persistent luminescence even after abrasion testing used to simulate the normal wear and tear that fabric experiences during use. These results show that PLNPs can be successfully incorporated into filaments which can be used in fabrics and will maintain the persistent luminescent properties.
Collapse
Affiliation(s)
- Brian G Yust
- College of Humanities & Sciences, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Abdur Rahaman Sk
- Research and Development, Lear Corporation, 1 Penn-Dye St, Pine Grove, PA 17963, USA
| | - Antonios Kontsos
- College of Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Brian George
- School of Design & Engineering, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
2
|
李 晓, 孙 晓, 林 华, 张 沛, 焦 明, 张 霓. [ In vivo tumor imaging and therapy based on near-infrared cadmium-free quantum dots]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:620-626. [PMID: 38932550 PMCID: PMC11208639 DOI: 10.7507/1001-5515.202404002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/08/2024] [Indexed: 06/28/2024]
Abstract
Near-infrared fluorescence imaging technology, which possesses superior advantages including real-time and fast imaging, high spatial and temporal resolution, and deep tissue penetration, shows great potential for tumor imaging in vivo and therapy. Ⅰ-Ⅲ-Ⅵ quantum dots exhibit high brightness, broad excitation, easily tunable emission wavelength and superior stability, and do not contain highly toxic heavy metal elements such as cadmium or lead. These advantages make Ⅰ-Ⅲ-Ⅵ quantum dots attract widespread attention in biomedical field. This review summarizes the recent advances in the controlled synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots and their applications in tumor imaging in vivo and therapy. Firstly, the organic-phase and aqueous-phase synthesis of Ⅰ-Ⅲ-Ⅵ quantum dots as well as the strategies for regulating the near-infrared photoluminescence are briefly introduced; secondly, representative biomedical applications of near-infrared-emitting cadmium-free quantum dots including early diagnosis of tumor, lymphatic imaging, drug delivery, photothermal and photodynamic therapy are emphatically discussed; lastly, perspectives on the future directions of developing quantum dots for biomedical application and the faced challenges are discussed. This paper may provide guidance and reference for further research and clinical translation of cadmium-free quantum dots in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- 晓琪 李
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 晓 孙
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 华 林
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 沛森 张
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 明霞 焦
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - 霓 张
- 青岛科技大学 化学与分子工程学院(山东青岛 266042)College of Chemical and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| |
Collapse
|
3
|
Wang H, Yao J, Zeng R. The luminescence modulation of rare earth-doped/containing lead-free double perovskites toward multifunctional applications: a review. NANOSCALE 2024; 16:6837-6852. [PMID: 38501176 DOI: 10.1039/d3nr06472g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Lead-free double perovskites (DPs) with superior environmental stability and high defect tolerance have attracted considerable attention and exhibit great promise in photodetectors, solar cells, lighting devices, etc. However, achieving optical modulation and high photoluminescence quantum yield using this kind of material remains a challenge. Rare earth ions feature abundant energy levels and outstanding photophysical properties. Incorporating rare earth ions into lead-free DPs is an effective strategy to improve their optical performances, which have great effects on night-vision and light emitting diodes. Consequently, in this mini-review, we summarize the synthesis methods, optical properties, issues, and multifunctional applications of lead-free DPs described in recent years. The performances of DPs can be modulated via rare earth doping, which involves the extension of luminescence range, the improvement of PLQY, the realization of multi-mode excitation, and the regulation of luminescence color. We hope that this review will provide some insights into luminescence modulation and applications of lead-free DPs.
Collapse
Affiliation(s)
- Haiyan Wang
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| | - Jiandong Yao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| | - Ruosheng Zeng
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China.
| |
Collapse
|
4
|
Brito ML, Huband S, Walker M, Walton RI, de Sousa Filho PC. Nanoporous YVO 4 as a luminescent host for probing molecular encapsulation. Chem Commun (Camb) 2023; 59:11393-11396. [PMID: 37668052 DOI: 10.1039/d3cc03501h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Control of phase separation of VO43- and rare earth precursors in reverse microemulsions afforded ∼35 nm YVO4 nanoparticles with functionalisable ∼7 ± 3 nm nanopores. Doping by Eu3+ allowed luminescent probing of interfacial crystallisation while xylenol orange absorption showed molecular encapsulation in particle cavities. This provides potential multifunctional systems combining UV-Vis-NIR luminescence and (photo)active molecules for optical sensing.
Collapse
Affiliation(s)
- Milena Lima Brito
- Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas (Unicamp), R. Monteiro Lobato, 270, 13083-970, Campinas, São Paulo, Brazil.
| | - Steven Huband
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Marc Walker
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Richard I Walton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Paulo C de Sousa Filho
- Department of Inorganic Chemistry, Institute of Chemistry, University of Campinas (Unicamp), R. Monteiro Lobato, 270, 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
5
|
Lee G, Jeong WH, Kim B, Jeon S, Smith AM, Seo J, Suzuki K, Kim JY, Lee H, Choi H, Chung DS, Choi J, Choi H, Lim SJ. Design and Synthesis of CdHgSe/HgS/CdZnS Core/Multi-Shell Quantum Dots Exhibiting High-Quantum-Yield Tissue-Penetrating Shortwave Infrared Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301161. [PMID: 37127870 PMCID: PMC11341011 DOI: 10.1002/smll.202301161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Cdx Hg1- x Se/HgS/Cdy Zn1- y S core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000-1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II Cdx Hg1- x Se/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap Cdy Zn1- y S outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40-80%) and aqueous (20-70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs. Moreover, they maintain bright PL in a photocurable resin (QY 40%, peak wavelength ≈ 1300 nm), enabling the fabrication of SWIR-luminescent composites of diverse morphology and concentration. These composites are used to localize controlled amounts of SWIR QDs inside artificial (Intralipid) and porcine tissues and quantitatively evaluate the applicability as luminescent probes for deep-tissue imaging.
Collapse
Affiliation(s)
- Gyudong Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Division of Nanotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Woo Hyeon Jeong
- Division of Nanotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Beomjoo Kim
- Department of Robotics Engineering, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Sungwoong Jeon
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- IMsystem Corp., DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois Urbana-Champaign (UIUC), Urbana, IL, 61801, USA
- Department of Materials Science and Engineering, UIUC, Urbana, IL, 61801, USA
- Cancer Center at Illinois, UIUC, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, UIUC, Urbana, IL, 61801, USA
| | - Jongcheol Seo
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongsangbuk-Do, 37673, Republic of Korea
| | - Kengo Suzuki
- Applied Spectroscopy System Department, Hamamatsu Photonics K.K., 812 Joko-Cho, Higashi-Ku, Hamamatsu City, 431-3196, Japan
| | - Jin-Young Kim
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Division of Biotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Hyunki Lee
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- Division of Intelligent Robot, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongsangbuk-Do, 37673, Republic of Korea
| | - Jongmin Choi
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| | - Hyosung Choi
- Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sung Jun Lim
- Division of Nanotechnology, DGIST, 333 Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
6
|
Arteaga Cardona F, Jain N, Popescu R, Busko D, Madirov E, Arús BA, Gerthsen D, De Backer A, Bals S, Bruns OT, Chmyrov A, Van Aert S, Richards BS, Hudry D. Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals. Nat Commun 2023; 14:4462. [PMID: 37491427 PMCID: PMC10368714 DOI: 10.1038/s41467-023-40031-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF4) or heterogeneous (CaF2) shell domains on optically-active α-NaYF4:Yb:Er (with and without Ce3+ co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm2; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.
Collapse
Affiliation(s)
| | - Noopur Jain
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dmitry Busko
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Eduard Madirov
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Bernardo A Arús
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Annick De Backer
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara Bals
- EMAT, University of Antwerp, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Oliver T Bruns
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Andriy Chmyrov
- Helmholtz Pioneer Campus, Helmholtz Center Munich, Munich, Germany.
- Functional Imaging in Surgical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.
| | - Sandra Van Aert
- EMAT, University of Antwerp, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium.
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- Light Technology Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Damien Hudry
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
7
|
Sobhanan J, Rival JV, Anas A, Sidharth Shibu E, Takano Y, Biju V. Luminescent Quantum Dots: Synthesis, Optical Properties, Bioimaging and Toxicity. Adv Drug Deliv Rev 2023; 197:114830. [PMID: 37086917 DOI: 10.1016/j.addr.2023.114830] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Luminescent nanomaterials such as semiconductor nanocrystals (NCs) and quantum dots (QDs) attract much attention to optical detectors, LEDs, photovoltaics, displays, biosensing, and bioimaging. These materials include metal chalcogenide QDs and metal halide perovskite NCs. Since the introduction of cadmium chalcogenide QDs to biolabeling and bioimaging, various metal nanoparticles (NPs), atomically precise metal nanoclusters, carbon QDs, graphene QDs, silicon QDs, and other chalcogenide QDs have been infiltrating the nano-bio interface as imaging and therapeutic agents. Nanobioconjugates prepared from luminescent QDs form a new class of imaging probes for cellular and in vivo imaging with single-molecule, super-resolution, and 3D resolutions. Surface modified and bioconjugated core-only and core-shell QDs of metal chalcogenides (MX; M = Cd/Pb/Hg/Ag, and X = S/Se/Te,), binary metal chalcogenides (MInX2; M = Cu/Ag, and X = S/Se/Te), indium compounds (InAs and InP), metal NPs (Ag, Au, and Pt), pure or mixed precision nanoclusters (Ag, Au, Pt), carbon nanomaterials (graphene QDs, graphene nanosheets, carbon NPs, and nanodiamond), silica NPs, silicon QDs, etc. have become prevalent in biosensing, bioimaging, and phototherapy. While heavy metal-based QDs are limited to in vitro bioanalysis or clinical testing due to their potential metal ion-induced toxicity, carbon (nanodiamond and graphene) and silicon QDs, gold and silica nanoparticles, and metal nanoclusters continue their in vivo voyage towards clinical imaging and therapeutic applications. This review summarizes the synthesis, chemical modifications, optical properties, and bioimaging applications of semiconductor QDs with particular references to metal chalcogenide QDs and bimetallic chalcogenide QDs. Also, this review highlights the toxicity and pharmacokinetics of QD bioconjugates.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Center for Adapting Flaws into Features, Department of Chemistry, Rice University, 6100 Main St., Houston, TX 77005, USA
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology, University of Calicut, Kerala, India
| | - Abdulaziz Anas
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kerala 682 018, India.
| | | | - Yuta Takano
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University, N10 W5, Sapporo, Hokkaido 060-0810, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0020, Japan.
| |
Collapse
|
8
|
Matulionyte M, Skripka A, Ramos-Guerra A, Benayas A, Vetrone F. The Coming of Age of Neodymium: Redefining Its Role in Rare Earth Doped Nanoparticles. Chem Rev 2023; 123:515-554. [PMID: 36516409 DOI: 10.1021/acs.chemrev.2c00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among luminescent nanostructures actively investigated in the last couple of decades, rare earth (RE3+) doped nanoparticles (RENPs) are some of the most reported family of materials. The development of RENPs in the biomedical framework is quickly making its transition to the ∼800 nm excitation pathway, beneficial for both in vitro and in vivo applications to eliminate heating and facilitate higher penetration in tissues. Therefore, reports and investigations on RENPs containing the neodymium ion (Nd3+) greatly increased in number as the focus on ∼800 nm radiation absorbing Nd3+ ion gained traction. In this review, we cover the basics behind the RE3+ luminescence, the most successful Nd3+-RENP architectures, and highlight application areas. Nd3+-RENPs, particularly Nd3+-sensitized RENPs, have been scrutinized by considering the division between their upconversion and downshifting emissions. Aside from their distinctive optical properties, significant attention is paid to the diverse applications of Nd3+-RENPs, notwithstanding the pitfalls that are still to be addressed. Overall, we aim to provide a comprehensive overview on Nd3+-RENPs, discussing their developmental and applicative successes as well as challenges. We also assess future research pathways and foreseeable obstacles ahead, in a field, which we believe will continue witnessing an effervescent progress in the years to come.
Collapse
Affiliation(s)
- Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Alma Ramos-Guerra
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| | - Antonio Benayas
- Department of Physics and CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.,Molecular Imaging Program at Stanford Department of Radiology Stanford University 1201 Welch Road, Lucas Center (exp.), Stanford, California 94305-5484, United States
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, Varennes, Québec J3X 1P7, Canada
| |
Collapse
|
9
|
Karmakar S, Das TK, Kalarikkal N, Saha A. A Simplified Approach for the Aqueous Synthesis of Luminescent CdSe/ZnS Core/Shell Quantum Dots and Their Applications in Ultrasensitive Determination of the Biomarker 3-Nitro-l-tyrosine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15995-16003. [PMID: 36512759 DOI: 10.1021/acs.langmuir.2c02459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In contrast to the hot-injection organometallic routes, synthesizing stable and highly luminescent core/shell nanocrystals with encapsulation of biocompatible groups through an aqueous route is a long-standing challenge. In recent years, relatively high quantum efficiency and unique properties of core/shell nanostructured materials (quantum dots) have contributed toward enhancement in sensing capability. The present work reports a facile aqueous synthesis process of core/shell CdSe/ZnS quantum dots (QDs) with encapsulation of glutathione (GSH). The optimal conditions for the synthesis of the most stable particles were ascertained, and the different experimental analyses suggest that the stable core/shell QDs in question have good crystallinity with a size around 4.7 nm with a shell thickness of 0.7 nm and a photoluminescence quantum yield of about 35%. Further, it is demonstrated that the as-synthesized material has great potential in detecting as low as 0.28 nM 3-nitro-l-tyrosine (3-NT), an important marker for oxidative stress, the level of which in our body signals several chronically diseased conditions. The enthalpy-driven interactions of CdSe/ZnS-GSH QDs with 3-NT were characterized through steady-state and time-resolved luminescence spectroscopy and isothermal microcalorimetry. The devised method of probing 3-NT was further validated with human serum samples. Thus, the proposed strategy may provide a protocol for selective determination of 3-NT under different pathological conditions.
Collapse
Affiliation(s)
- Sudip Karmakar
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Tushar Kanti Das
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam686560, Kerala, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, III/LB-8 Bidhannagar, Kolkata700106, India
| |
Collapse
|
10
|
Singh P, Kachhap S, Singh P, Singh S. Lanthanide-based hybrid nanostructures: Classification, synthesis, optical properties, and multifunctional applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Raab M, Skripka A, Bulmahn J, Pliss A, Kuzmin A, Vetrone F, Prasad P. Decoupled Rare-Earth Nanoparticles for On-Demand Upconversion Photodynamic Therapy and High-Contrast Near Infrared Imaging in NIR IIb. ACS APPLIED BIO MATERIALS 2022; 5:4948-4954. [PMID: 36153945 DOI: 10.1021/acsabm.2c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rare-earth doped multi-shell nanoparticles slated for theranostic applications produce a variety of emission bands upon near-infrared (NIR) excitation. Their downshifting emission is useful for high-contrast NIR imaging, while the upconversion light can induce photodynamic therapy (PDT). Unfortunately, integration of imaging and therapy is challenging. These modalities are better to be controlled independently so that, with the help of imaging, selective delivery of a theranostic agent at the site of interest could be ensured prior to on-demand PDT initiation. We introduce here multi-shell rare-earth doped nanoparticles (RENPs) arranged in a manner to produce only downshifting emission for NIR imaging when excited at one NIR wavelength and upconversion emission for therapeutic action by using a different excitation wavelength. In this work, multi-shell RENPs with a surface-bound sensitizer have been synthesized for decoupled 1550 nm downshifting emission upon 800 nm excitation and 550 nm upconversion emission caused by 980 nm irradiation. The independently controlled emission bands allow for high-contrast NIR imaging in NIR-IIb of optical transparency that gives high-contrast images due to significantly reduced light scattering. This can be conducted prior to PDT using 980 nm to produce upconverted light at 550 nm that excites the RENP surface-bound photosensitizer, Rose Bengal (RB), to effect photodynamic therapy with high specificity and safer theranostics.
Collapse
Affiliation(s)
- Micah Raab
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Artiom Skripka
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes (Montréal), Quebec J3X 1P7, Canada
| | - Julia Bulmahn
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Artem Pliss
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
| | - Andrey Kuzmin
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
| | - Fiorenzo Vetrone
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes (Montréal), Quebec J3X 1P7, Canada
| | - Paras Prasad
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo (SUNY), Buffalo, New York 14260-4200, United States
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
12
|
Kuznetsov D, Dezhurov S, Krylsky D, Novikov V, Neschisliaev V, Kuznetsova A. Use of folic acid nanosensors with excellent photostability for hybrid imaging. J Zhejiang Univ Sci B 2022; 23:784-790. [PMID: 36111575 PMCID: PMC9483608 DOI: 10.1631/jzus.b2200107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/22/2022] [Indexed: 12/09/2022]
Abstract
Sentinel lymph node (SLN) mapping and tumor-boundary delineation play a key role in cancer surgery, as they have great potential to reduce surgical intervention and increase relapse-free survival rates of patients. The autofluorescence imaging (AFI) method can improve the efficiency of tumor delineation and optimize the scope of surgical intervention, but there are still no fluorescent drugs that can be used with such a method to form a hybrid imaging technique. Another problem is bleaching when fluorescent dyes are conjugated with folic acid. This study reports, for the first time, nanosensors with excellent photostability and compatibility with endoscopes for AFI, which makes simultaneous hybrid imaging possible. After functionalization of the quantum dot (QD) surfaces, we found that they bound effectively to MCF-7 cancer cells. The diagnostic value of simultaneous hybrid imaging using common AFI equipment in delineating tumor boundaries and mapping SLN can reduce the cost of diagnosis and increase its reliability.
Collapse
Affiliation(s)
- Denis Kuznetsov
- G N. Gabrichevsky Scientific and Research Institute of Epidemiology and Microbiology, Moscow 125212, Russia.
- Perm State Pharmaceutical Academy, Perm 614990, Russia.
| | - Sergey Dezhurov
- Research Institute of Applied Acoustics, Center of High Technologies, Dubna 141980, Russia
| | - Dmitri Krylsky
- Research Institute of Applied Acoustics, Center of High Technologies, Dubna 141980, Russia
| | | | | | | |
Collapse
|
13
|
Gusmão LA, Matsuo FS, Barbosa HFG, Tedesco AC. Advances in nano-based materials for glioblastoma multiforme diagnosis: A mini-review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.836802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of nano-based materials for diagnosis enables a more precise prognosis and results. Inorganic, organic, or hybrid nanoparticles using nanomaterials, such as quantum dots, extracellular vesicle systems, and others, with different molecular compositions, have been extensively explored as a better strategy to overcome the blood-brain barrier and target brain tissue and tumors. Glioblastoma multiforme (GBM) is the most common and aggressive primary tumor of the central nervous system, with a short, established prognosis. The delay in early detection is considered a key challenge in designing a precise and efficient treatment with the most encouraging prognosis. Therefore, the present mini-review focuses on discussing distinct strategies presented recently in the literature regarding nanostructures’ use, design, and application for GBM diagnosis.
Collapse
|
14
|
Premcheska S, Lederer M, Kaczmarek AM. The importance, status, and perspectives of hybrid lanthanide-doped upconversion nanothermometers for theranostics. Chem Commun (Camb) 2022; 58:4288-4307. [PMID: 35258046 DOI: 10.1039/d1cc07164e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Theranostics combines diagnostics and therapy in a single multifunctional system. Multifunctional upconversion luminescent lanthanide-doped nanothermometers for theranostic purposes offer non-invasive and sensitive multimodal performance in the biomedical field over traditional temperature measurement methods. Despite existing challenges, various studies on hybrid upconversion nanothermometers show substantial progress for (bio)imaging, temperature sensing, photodynamic and photothermal therapy, as well as drug delivery applications. The beauty of such an approach is that it unfolds possibilities to combine diagnostics and therapy in a single particle, which can modify the way certain diseases are treated, hence change the entire healthcare scene.
Collapse
Affiliation(s)
- Simona Premcheska
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
| | - Mirijam Lederer
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
| | - Anna M Kaczmarek
- NanoSensing Group, Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium.
| |
Collapse
|