Design and preparation of nanoarchitectonics of LDH/polymer composite with particular morphology as catalyst for green synthesis of imidazole derivatives.
Sci Rep 2022;
12:11288. [PMID:
35787674 PMCID:
PMC9253321 DOI:
10.1038/s41598-022-15582-z]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
This paper was designed and prepared a new nanoarchitectonics of LDH/polymer composite with specific morphology. For this purpose, CTAB surfactant was used to control the morphology of layered double hydroxide (LDH) and to prepare LDH/polymer nanocomposites (LDH-APS-PEI-DTPA). The polymer was synthesized using diethylenetriaminepentaacetic acid (DTPA), polyethylenimine and used with LDH to form a nanocomposite with high thermal stability. Subsequently, the prepared nanocomposite was identified using FTIR, EDX, TGA, XRD, FESEM, and BET techniques. In addition, the prepared LDH-APS-PEI-DTPA nanocomposite was used as a heterogeneous and recyclable catalyst for the synthesis of imidazole derivatives under green conditions. The results showed that the LDH-APS-PEI-DTPA nanocomposite benefit from suitable morphology, simple preparation, high catalytic activity, and high surface area. Also, the proposed LDH-APS-PEI-DTPA heterogeneous catalyst showed high stability and reusability for five consecutive runs which was consistent with the principles of green chemistry.
Collapse