Varghese EV, Gao CF, Chang YL, Chen HY, Chen CH. Synthesis of Distorted Nitrogen-Doped Nanographenes by Partially Oxidative Cyclodehydrogenation Reaction.
Chem Asian J 2022;
17:e202200114. [PMID:
35137559 DOI:
10.1002/asia.202200114]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/11/2022]
Abstract
A series of partially fused N-doped nanographenes are synthesized via the oxidative cyclodehydrogenation of oligoaryl-substituted dibenzo[ e,l ]pyrene ( 1 ), including compounds ( 2 - 4 ) with five, six, and seven new C-C bonds are formed, respectively, implying stepwise C-C bond fusion and extended π-conjugation. Single-crystal X-ray diffraction analysis of compound 4a revealed that the presence of sterically demanding groups hindered the formation of planar and fully fused nanographene in the oxidative cyclodehydrogenation reaction step. Optical study of compounds 2 to 4 showed that extended π-conjugation leads to a regular stepwise bathochromic shift in the absorption and emission spectra. Furthermore, the HOMO-LUMO gaps of these compounds exhibit a decrease as C-C bond formation proceeds. Thus, the optoelectronic properties of nanographenes are highly dependent on the formation of new C-C bonds in the molecular skeleton.
Collapse