1
|
Pei Z, Qin T, Tian R, Ou Y, Guo X. Construction of an Amethyst-like MoS 2@Ni 9S 8/Co 3S 4 Rod Electrocatalyst for Overall Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2302. [PMID: 37630887 PMCID: PMC10459789 DOI: 10.3390/nano13162302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Transition metal sulphide electrocatalytic materials possess the bright overall water-splitting performance of practical electrocatalytic technologies. In this study, an amethyst-like MoS2@Ni9S8/Co3S4 rod electrocatalyst was constructed via a one-step hydrothermal method with in-situ-grown ZIF-67 nanoparticles on nickel foam (NF) as a precursor. The rational design and synthesis of MoS2@Ni9S8/Co3S4 endow the catalyst with neat nanorods morphology and high conductivity. The MoS2@Ni9S8/Co3S4/NF with the amethyst-like rod structure exposes abundant active sites and displays fast electron-transfer capability. The resultant MoS2@Ni9S8/Co3S4/NF exhibits outstanding hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activities, with low overpotentials of 81.24 mV (HER) at 10 mA cm-2 and 159.67 mV (OER) at 50 mA cm-2 in 1.0 M KOH solution. The full-cell voltage of overall water splitting only achieves 1.45 V at 10 mA cm-2. The successful preparation of the amethyst-like MoS2@Ni9S8/Co3S4 rod electrocatalyst provides a reliable reference for obtaining efficient electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Zhen Pei
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Tengteng Qin
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Rui Tian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Yangxin Ou
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
| | - Xingzhong Guo
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China; (Z.P.); (T.Q.); (R.T.); (Y.O.)
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| |
Collapse
|
2
|
Qu C, Cao J, Chen Y, Wei M, Liu X, Feng B, Jin S, Xu A, Jin D, Yang L. Hierarchical CoMoS 3.13/MoS 2 hollow nanosheet arrays as bifunctional electrocatalysts for overall water splitting. Dalton Trans 2022; 51:14590-14600. [PMID: 36082745 DOI: 10.1039/d2dt02312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow hetero-nanosheet arrays have attracted great attention due to their efficient catalytic abilities for water splitting. We successfully fabricated ZIF-67-derived hollow CoMoS3.13/MoS2 nanosheet arrays on carbon cloth in situ through a two-step heating-up hydrothermal method, in which the MoS2 nanosheets were suitably distributed on the surface of the hollow CoMoS3.13 nanosheet arrays. There was a distinct synergistic effect between CoMoS3.13 and MoS2, and a large number of defective and disordered interfaces were formed, which improved the charge transfer rate and provided abundant electrochemical active sites. CMM 0.5, with the optimal Mo doping concentration of 0.5 mmol, exhibited the best catalytic properties. The overpotential values of CMM 0.5 at 10 mA cm-2 were only 107 and 169 mV for the HER and OER, respectively, and it had nearly 100% faradaic efficiency. A dual-electrode electrolytic cell assembled with CMM 0.5 required a voltage of only 1.507 V at 10 mA cm-2 for overall water splitting, and it displayed remarkable long-term durable bifunctional stability.
Collapse
Affiliation(s)
- Chunhong Qu
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Jian Cao
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China.,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Yanli Chen
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Maobin Wei
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China
| | - Xiaoyan Liu
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Bo Feng
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Shuting Jin
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Ao Xu
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Doudou Jin
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Lili Yang
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China.,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| |
Collapse
|
3
|
Jia HL, Guo CL, Chen RX, Zhao J, Liu R, Guan MY. Ruthenium nanoparticles supported on S-doped graphene as an efficient HER electrocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj04765e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient HER catalyst was prepared by doping graphene and wrapping ruthenium nanoparticles, and its performance is comparable to that of commercial Pt/C.
Collapse
Affiliation(s)
- Hai-Lang Jia
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Cheng-Lin Guo
- CMCU Engineering Co., Ltd, Chongqing, 400030, P. R. China
| | - Rui-Xin Chen
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Jiao Zhao
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Rui Liu
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| | - Ming-Yun Guan
- School of Chemical and Environmental Engineering, Institute of Advanced Functional Materials for Energy, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|