1
|
Zhang H, Chen H, Zhou Q, Wen X, Wang J, Li Q, Liu HB. Visible light-promoted anti-biofouling performance of cellulose acetate membrane for reverse osmosis desalination. Int J Biol Macromol 2024; 262:130196. [PMID: 38360223 DOI: 10.1016/j.ijbiomac.2024.130196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Sea water desalination is regarded as a major solution that could alleviate the water scarcity problem. Reverse osmosis (RO) is typically employed to recover fresh water from sea and brackish water via economical means. RO membrane fouling remains a critical issue restricting their widespread application. In this work, a tertiary thiophenal quaternary ammonium salt-based antibacterial agent was covalently reacted with cellulose acetate (CA) to obtain contact-active antibacterial quaternized CA-RO membrane (QCA-RO). The membrane was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle testing, and X-ray diffraction spectroscopy. The obtained QCA-RO membrane displayed good antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus and had bactericidal rates of 99 % in the presence of visible light. Results showed that embedding the quaternary ammonium salt did not cause any significant changes to the morphology, mechanical performance, and thermal stability of the RO membrane. The method described in this work not only produces QCA-RO membranes with good anti-biofilm performance but also presents great potential in seawater desalination.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemistry and Chemical Engineering,Guangxi University, Nanning, Guangxi Province 530004, China
| | - Hongzhou Chen
- School of Chemistry and Chemical Engineering,Guangxi University, Nanning, Guangxi Province 530004, China
| | - Qian Zhou
- School of Chemistry and Chemical Engineering,Guangxi University, Nanning, Guangxi Province 530004, China
| | - Xiaoqing Wen
- School of Chemistry and Chemical Engineering,Guangxi University, Nanning, Guangxi Province 530004, China
| | - Jing Wang
- School of Chemistry and Chemical Engineering,Guangxi University, Nanning, Guangxi Province 530004, China
| | - Qingyun Li
- Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, Guangxi Province 530003, China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering,Guangxi University, Nanning, Guangxi Province 530004, China; Key Laboratory of Guangxi Biorefinery, Guangxi University, Nanning, Guangxi Province 530003, China.
| |
Collapse
|
2
|
Wurm F, Netzer F, Schäffner U, Leukel J, Schweiß J, Pham T, Bechtold T. Single fiber coating of viscose filaments with cellulose acetate for partially hydrophobic hybrid fibers. J Appl Polym Sci 2023. [DOI: 10.1002/app.53890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Gao R, Liu X, Feng J, Han L, Xu J, Kan C. Synthesis and application of a novel polyurethane nanoemulsion bearing coumarin derivative as a "turn-on" fluorescence sensor toward Hg 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121612. [PMID: 35839695 DOI: 10.1016/j.saa.2022.121612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A novel polyurethane (PU-co-HCCA) nanoemulsion bearing coumarin derivative (HCCA) was synthesized as a "turn-on" fluorescent probe and used to modify filter paper, and its sensing properties were investigated. Results showed that PU-co-HCCA nanoemulsion exhibited high selectivity and excellent sensitivity toward Hg2+ over other metal ions, and possessed excellent fluorescence quantum yields of 0.976, ppb-levels detection limits of 1.61 ppb and large Stokes shifts of 101 nm. Meanwhile, as an application example of as-prepared PU-co-HCCA nanoemulsion, a Hg2+ test paper was prepared by modifying filter paper with PU-co-HCCA nanoemulsion, and results indicated that the test paper is portable and convenient and has a wide working pH range. We believe that the PU-co-HCCA nanoemulsion and the modified filter paper can provide a new design principle for the application of fluorescence sensors for metal ions including Hg2+.
Collapse
Affiliation(s)
- Rongsheng Gao
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Xueyan Liu
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Jianyan Feng
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Lu Han
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Jianhong Xu
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
| | - Chengyou Kan
- Department of Chemical Engineering and Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Tan WB, Luo D, Song W, Lu YY, Cheng N, Zhang JB, Huang T, Wang Y. Polydopamine-assisted polyethyleneimine grafting on electrospun cellulose acetate/TiO2 fibers towards highly efficient removal of Cr(VI). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yin Z, Chen X, Zhou T, Xue M, Li M, Liu K, Zhou D, Ou J, Xie Y, Ren Z, Luo Y, Hong Z. Mussel-inspired fabrication of superior superhydrophobic cellulose-based composite membrane for efficient oil emulsions separation, excellent anti-microbial property and simultaneous photocatalytic dye degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Lei J, Guo Z. Superamphiphilic stainless steel mesh for oil/water emulsion separation on-demand. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Wang Y, Zhao S, Guo Z, Huang J, Liu W. Multi-layer superhydrophobic nickel foam (NF) composite for highly efficient water-in-oil emulsion separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Fan M, Ren Z, Zhang Z, Yang Y, Guo Z. Simple preparation of a durable and low-cost load-bearing three-dimensional porous material for emulsion separation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03049c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Superhydrophobic MR–C composites were used for the separation of water-in-oil emulsions. Under a load of 500 N with a reciprocating wear, the contact angle was kept at 146 ± 2°. The oil-in-water emulsion can still be separated efficiently.
Collapse
Affiliation(s)
- Mingzhi Fan
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiying Ren
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
| | - Zhen Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yu Yang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|