1
|
Sun J, Lian X, Wang L, Duan Z. Development and Application of a Robust Imine-Based Covalent Organic Framework for Stir Bar Sorptive Extraction of Estrogens in Environmental Water. Molecules 2024; 29:5763. [PMID: 39683920 DOI: 10.3390/molecules29235763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
A covalent organic framework (COF) based on imine was synthesized using 2,5-dihexoxyterephthalaldehyde (DHT) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as starting materials. The TAPB-DHT-COF exhibited satisfactory chemical stability, making it a promising adsorbing material for stir bar sorptive extraction (SBSE) of four estrogens, including estrone (E1), β-estradiol (E2), hexestrol (HES), and mestranol (MeEE2), in ambient water samples. The extracted analytes were subsequently analyzed using a high-performance liquid chromatography-diode array detector (HPLC-DAD). A series of parameters affecting the SBSE process, such as solution pH, ionic strength, extraction time, and desorption solvent, were investigated by the controlled variable method. Under optimal conditions, the limit of detection (LODs) for the four targeted estrogens ranged from 0.06 to 0.15 µg/L, with a linear range from 0.2 to 100 µg/L. The observed enrichment factor (EF) ranged from 39 to 49, while the theoretical EF was estimated to be 50-fold. This methodology can be applied to the identification of estrogens in three environmental water samples.
Collapse
Affiliation(s)
- Jianing Sun
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xixi Lian
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Lianzhi Wang
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Zhengchao Duan
- School of Chemistry and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
3
|
Wang L, Cui X, Xu J, Wang G, Guo M, Yu L, Yang K, Luo Z, Zeng A, Chen G, Zhang J, Fu Q. Highly efficient amino-functionalized aluminum-based metal organic frameworks mesoporous nanorods for selective extraction of hydrocortisone in pharmaceutical wastewater. J Pharm Biomed Anal 2022; 219:114933. [PMID: 35820249 DOI: 10.1016/j.jpba.2022.114933] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Hydrocortisone (HC), as a common steroid hormone drug, is also one of the key intermediates involved in the synthesis of multiple steroid hormone drugs. Residual HC in pharmaceutical wastewater frequently pollutes environmental water as steroid hormone contaminant and possesses great threat to human health as well as sustainable development of the ecosystem. Herein, in order to develop a highly efficient adsorbent system for selective enrichment and detection of HC in pharmaceutical wastewater, a novel amino-functionalized aluminum-based metal organic frameworks (Al-MOFs@NH2) mesoporous nanorod is fabricated, in which 2-aminoterephthalic acid plays a dual role as organic linker and functional modification unit. The resultant Al-MOFs@NH2 not only exhibits stable mesoporous structure but also has large specific surface area (849.76 m2 g-1) and plentiful binding sites, which significantly increases the adsorption capacity for HC. Under the promotion of hydrogen bonding and hydrophobic interaction together, Al-MOFs@NH2 possesses high adsorption capacity (218.53 mg g-1) for HC, as well as shows satisfactory selectivity for HC and other steroid hormones. Moreover, a method using Al-MOFs@NH2 as solid phase extraction adsorbents combined with high performance liquid chromatography (HPLC) has been developed to specifically enrich and detect trace amount of HC in pharmaceutical wastewater. The developed method has a low limit of detection (LOD) (0.5×10-3 μg mL-1) and shows satisfactory recoveries for HC (75.9%-102.5%) with an acceptable relative standard deviation (RSD). These results demonstrate that the facile one-step preparation and excellent adsorption capacity makes Al-MOFs@NH2 attractive to capture and remove environmental steroid hormone pollutants. More importantly, the method proposed in this work is expected to provide a prospective solution for analysis of strong bioactive contaminants in pharmaceutical wastewater.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xia Cui
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiameng Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Gege Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Miao Guo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Liangwei Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ke Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhimin Luo
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Aiguo Zeng
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guoning Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jia Zhang
- Shaanxi Hanjiang Pharmaceutical Group Co., Ltd, Hanzhong 723000, China
| | - Qiang Fu
- Department of Pharmaceutical Analysis, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China; Department of Pharmaceutical Analysis, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|