1
|
Zhang Y, Zhu L, Yang Z, Tao W, Chen Z, Li T, Lei H, Li C, Wang L, Tian W, Li Z, Shang H, Zhu H. Transient Photoinduced Pb 2+ Disproportionation for Exciton Self-Trapping and Broadband Emission in Low-Dimensional Lead Halide Perovskites. J Am Chem Soc 2024; 146:7831-7838. [PMID: 38445480 DOI: 10.1021/jacs.4c01115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Low-dimensional lead halide perovskites with broadband emission hold great promise for single-component white-light-emitting (WLE) devices. The origin of their broadband emission has been commonly attributed to self-trapped excitons (STEs) composed of localized electronic polarization with a distorted lattice. Unfortunately, the exact electronic and structural nature of the STE species in these WLE materials remains elusive, hindering the rational design of high-efficiency WLE materials. In this study, by combining ultrafast transient absorption spectroscopy and ab initio calculations, we uncover surprisingly similar STE features in two prototypical low dimensional WLE perovskite single crystals: 1D (DMEDA)PbBr4 and 2D (EDBE)PbBr4, despite of their different dimensionalities. Photoexcited excitons rapidly localize to intrinsic STEs within ∼250 fs, contributing to the white light emission. Crucially, STEs in both systems exhibit characteristic absorption features akin to those of Pb+ and Pb3+. Further atomic level theoretical simulations confirm photoexcited electrons and holes are localized on the Pb2+ site to form Pb+- and Pb3+-like species, resembling transient photoinduced Pb2+ disproportionation. This study provides conclusive evidence on the key excited state species for exciton self-trapping and broadband emission in low dimensional lead halide WLE perovskites and paves the way for the rational design of high-efficiency WLE materials.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory of Modern Optical Instrument, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Leilei Zhu
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxia Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Tao
- State Key Laboratory of Modern Optical Instrument, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zeng Chen
- State Key Laboratory of Modern Optical Instrument, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Tianjing Li
- State Key Laboratory of Modern Optical Instrument, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Haixin Lei
- State Key Laboratory of Modern Optical Instrument, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Congzhou Li
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Honghui Shang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haiming Zhu
- State Key Laboratory of Modern Optical Instrument, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
2
|
Peng H, Tian Y, Wang X, Huang T, Yu Z, Zhao Y, Dong T, Wang J, Zou B. Pure White Emission with 91.9% Photoluminescence Quantum Yield of [(C 3H 7) 4N] 2Cu 2I 4 out of Polaronic States and Ultra-High Color Rendering Index. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12395-12403. [PMID: 35235303 DOI: 10.1021/acsami.2c00006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recently, cuprous halide perovskite-type materials have drawn tremendous attention for their intriguing optical properties. Here, a zero-dimensional (0D) Cu(I)-based compound of [(C3H7)4N]2Cu2I4 ([C3H7)4N]+ = tetrapropylammonium cation) was synthesized by a facile solution method, a monoclinic system of P21/n symmetry with a Cu2I42- cluster as the confined structure. The as-synthesized [(C3H7)4N]2Cu2I4 exhibits bright dual-band pure white emission with a photoluminescence quantum yield (PLQY) of 91.9% and CIE color coordinates of (0.33, 0.35). Notably, this compound also exhibits an ultrahigh color rendering index (CRI) of 92.2, which is comparable to the highest value of single-component metal halides reported recently. Its Raman spectra provide a clear spectral profile of strong electron-phonon interaction after [(C3H7)4N]+ incorporation, favoring the self-trapped exciton (STE) formation. [(C3H7)4N]2Cu2I4 can give dual-STE bands at the same time because of the Cu-Cu metal bond in a Cu2I42- cluster, whose populations could be scaled by temperature, together with the local dipole orientation modulation of neighboring STEs and phase transition related emission color coordinate change. Particularly, the outstanding chemical- and antiwater stability of this compound was also demonstrated. This work illustrates the potential of such cuprous halide perovskite-type materials in multifunctional applications, such as lighting in varied environments.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Tian
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Xinxin Wang
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Zongmian Yu
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| | - Yueting Zhao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tiantian Dong
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Peng H, Zou B. Effects of Electron-Phonon Coupling and Spin-Spin Coupling on the Photoluminescence of Low-Dimensional Metal Halides. J Phys Chem Lett 2022; 13:1752-1764. [PMID: 35166551 DOI: 10.1021/acs.jpclett.1c03849] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Low-dimensional metal halides (LDMHs), as a derivative of three-dimensional lead halide perovskites, have attracted much attention because of their unique crystal structures and fascinating photonic properties. The simple synthesis and rich photonic properties of LDMHs make them striking candidates for the development of lighting, photodetectors, biological imaging, etc. Although many novel LDMHs have been achieved with strong electron-phonon coupling related to their self-trapped excitons (STEs) and excellent optical responses, transition-metal halides or doped halides have not been covered in regard to their rich spin characteristics. In this Perspective, we aim to deeply understand the role of electron-phonon coupling and STEs with magnetic coupling effects in regulating the optical properties of LDMHs and try to provide a novel way or a series of novel systems for the realization of next-generation high-performance luminescent materials with spin-coupling-involved photonics. Finally, an outlook toward potential challenges and applications of such ionic semiconducting LDMHs is also presented.
Collapse
Affiliation(s)
- Hui Peng
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials; and School of Physics, Guangxi University, Nanning 530004, China
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Nonferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environments and Materials; and School of Physics, Guangxi University, Nanning 530004, China
| |
Collapse
|