1
|
Li R, Wang C, Liu Y, Suo C, Zhang D, Zhang J, Guo W. Computational screening of defective BC 3-supported single-atom catalysts for electrochemical CO 2 reduction. Phys Chem Chem Phys 2024; 26:18285-18301. [PMID: 38910560 DOI: 10.1039/d4cp01217h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The electrochemical CO2 reduction reaction (eCO2RR) driven by renewable electricity offers a green and sustainable technology for synthesizing chemicals and managing global carbon balance. However, developing electrocatalysts with high activity and selectivity for producing C1 products (CO, HCOOH, CH3OH, and CH4) remains a daunting task. In this study, we conducted comprehensive first-principles calculations to investigate the eCO2RR mechanism using B-defective BC3-supported transition metal single-atom catalysts (TM@BC3 SACs). Initially, we evaluated the thermodynamic and electrochemical stability of the designed 26 TM@BC3 SACs by calculating the binding energy and dissolution potential of the anchored TM atoms. Subsequently, the selectivity of the eCO2RR and hydrogen evolution reaction (HER) on stable SACs was determined by comparing the free energy change (ΔG) for the first protonation of CO2 with the ΔG of *H formation. The stability and selectivity screening processes enabled us to narrow down the pool of SACs to the 14 promising ones. Finally, volcano plots for the eCO2RR towards different C1 products were established by using the adsorption energy descriptors of key intermediates, and three SACs were predicted to exhibit high activity and selectivity. The limiting potentials (UL) for HCOOH production on Pd@BC3 and Ag@BC3 are -0.11 V and -0.14 V. CH4 is a preferred product on Re@BC3 with UL of -0.22 V. Elaborate electronic structure calculations elucidate that the activity and selectivity originate from the sufficient activation of the C-O bond and the strong orbital hybridization between crucial intermediates and metal atoms. The proposed catalyst screening criteria, constructed volcano plots and predicted SACs may provide a theoretical foundation for the development of computationally guided catalyst designs for electrochemical CO2 conversion to C1 products.
Collapse
Affiliation(s)
- Renyi Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Caimu Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Yaozhong Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Chengxiang Suo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Danyang Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Jiao Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Wei Guo
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
- Frontiers Science Center for High Energy Material (MOE), Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Barreto FC, da Silva MKL, Cesarino I. Copper Nanoparticles and Reduced Graphene Oxide as an Electrode Modifier for the Development of an Electrochemical Sensing Platform for Chloroquine Phosphate Determination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091436. [PMID: 37176981 PMCID: PMC10180146 DOI: 10.3390/nano13091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
This study describes the use of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO) as an electrode modifier for the determination of chloroquine phosphate (CQP). The synthetized rGO-CuNPs composite was morphologically characterized using scanning electron microscopy and electrochemically characterized using cyclic voltammetry. The parameters were optimized and the developed electrochemical sensor was applied in the determination of CQP using square-wave voltammetry (SWV). The analytical range for the determination of CQP was 0.5 to 110 μmol L-1 (one of the highest linear ranges for CQP considering electrochemical sensors), with limits of detection and quantification of 0.23 and 0.78 μmol L-1, respectively. Finally, the glassy carbon (GC) electrode modified with rGO-CuNPs was used for quantification of CQP in tap water; a study was carried out with interferents using SWV and obtained great results. The use of rGO-CuNP material as an electrode modifier was thus shown to be a good alternative for the development of low-cost devices for CQP analysis.
Collapse
Affiliation(s)
- Francisco Contini Barreto
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Martin Kássio Leme da Silva
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Ivana Cesarino
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| |
Collapse
|
3
|
Gholami A, Shakerzadeh E, Chigo Anota E. Exploring the potential use of pristine and metal-encapsulated B36N36 fullerenes in delivery of β-lapachone anticancer drug: DFT approach. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
4
|
Gholami A, Shakerzadeh E, Chigo Anota E, corazon Flores Bautista M. A theoretical perspective on the adsorption performance of pristine and Metal-encapsulated B36N36 fullerenes toward the hydroxyurea and nitrosourea anticancer drugs. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Potential of B24N24 nanocluster for sensing and delivering aloe-emodin anticancer drug: A DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Adekoya O, Adekoya GJ, Sadiku RE, Hamam Y, Ray SS. Density Functional Theory Interaction Study of a Polyethylene Glycol-Based Nanocomposite with Cephalexin Drug for the Elimination of Wound Infection. ACS OMEGA 2022; 7:33808-33820. [PMID: 36188269 PMCID: PMC9520710 DOI: 10.1021/acsomega.2c02347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/26/2022] [Indexed: 05/13/2023]
Abstract
In this paper, density functional theory (DFT) simulations are used to evaluate the possible use of a graphene oxide-based poly(ethylene glycol) (GO/PEG) nanocomposite as a drug delivery substrate for cephalexin (CEX), an antibiotic drug employed to treat wound infection. First, the stable configuration of the PEGylated system was generated with a binding energy of -25.67 kcal/mol at 1.62 Å through Monte Carlo simulation and DFT calculation for a favorable adsorption site. The most stable configuration shows that PEG interacts with GO through hydrogen bonding of the oxygen atom on the hydroxyl group of PEG with the hydrogen atom of the carboxylic group on GO. Similarly, for the interaction of the CEX drug with the GO/PEG nanocomposite excipient system, the adsorption energies are computed after determining the optimal and thermodynamically favorable configuration. The nitrogen atom from the amine group of the drug binds with a hydrogen atom from the carboxylic group of the GO/PEG nanocomposite at 1.75 Å, with an adsorption energy of -36.17 kcal/mol, in the most stable drug-excipient system. Drug release for tissue regeneration at the predicted target cell is more rapid in moist conditions than in the gas phase. The solubility of the suggested drug in the aqueous media around the open wound is shown by the magnitude of the predicted solvation energy. The findings from this study theoretically validate the potential use of a GO/PEG nanocomposite for wound treatment application as a drug carrier for sustained release of the CEX drug.
Collapse
Affiliation(s)
- Oluwasegun
Chijioke Adekoya
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Gbolahan Joseph Adekoya
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Rotimi Emmanuel Sadiku
- Institute
of Nanoengineering Research (INER), Department of Chemical, Metallurgical
and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Yskandar Hamam
- Department
of Electrical Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria 001, South Africa
- École
Supérieure d’Ingénieurs en Électrotechnique
et Électronique, Cité Descartes, 2 Boulevard Blaise Pascal, Noisy-le-Grand, Paris 93160, France
| | - Suprakas Sinha Ray
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Department
of Chemical Sciences, University of Johannesburg, Doornforntein, Johannesburg 2028, South
Africa
- , ,
| |
Collapse
|
7
|
Potential of B 24O 24 nanocluster for sensing and delivering chlormethine anticancer drug: a DFT study. J Mol Model 2022; 28:236. [PMID: 35900596 DOI: 10.1007/s00894-022-05224-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/13/2022] [Indexed: 10/16/2022]
Abstract
In the present research, the adsorption and release of chlormethine (CM) drug on the B24O24 nanocage have been reported in the water media and gas phase at GGA/PBE/DNP computational level. The interaction between B24O24 nanocage and CM drug shows that adsorptions of the chlormethine on B24O24 nanocage for the most stable complexes are - 1.47 to - 1.36 eV in the gas phase and water media, respectively. The CM adsorption caused a notable change in the band gap (Eg) and work function (Φ) of the B24O24 nanocage in the studied complexes. The binding of chlormethine to B24O24 also significantly increased the polarity of the drug carrier, which is a desirable property for drug delivery in biological environments. CM drugs can be released from the nanocage in the presence of an external electric field along the X-axis direction. The present study results show that the B24O24 nanocage is a possible carrier for delivering chlormethine drugs.
Collapse
|
8
|
Shakerzadeh E, Zborowski KK, Chigo Anota E, Nguyen MT. Pristine and alkali and alkaline earth metals encapsulated B
36
N
36
nanoclusters as prospective delivery agents and detectors for 5‐fluorouracil anticancer drug. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ehsan Shakerzadeh
- Chemistry Department, Faculty of Science Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Krzysztof K. Zborowski
- Department of General Chemistry, Faculty of Chemistry Jagiellonian University Kraków Poland
| | - Ernesto Chigo Anota
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Ciudad Universitaria, San Manuel Puebla México
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST) Ho Chi Minh City Vietnam
| |
Collapse
|
9
|
Rahimi R, Solimannejad M. B3O3 monolayer with dual application in sensing of COVID-19 biomarkers and drug delivery for treatment purposes: A periodic DFT study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Rahimi R, Solimannejad M, Soleimannejad M. Two-dimensionalcovalent triazine frameworks as superior nanocarriers for the delivery of thioguanine anti-cancer drugs: a periodic DFT study. NEW J CHEM 2022. [DOI: 10.1039/d2nj02050e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work aims to introduce a superior nanocarrier for thioguanine (TG) anti-cancer drug delivery, drug release, and cancer therapy through computational chemistry.
Collapse
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran
| | | |
Collapse
|
11
|
Rahimi R, Solimannejad M, Ehsanfar Z. Potential application of XC3 (X = B, N) nanosheets in drug delivery of hydroxyurea anticancer drug: a comparative DFT study. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2014587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | | |
Collapse
|