1
|
Wang C, Ji T, Luan W, Yao D, Zhao R, Han J, Wang L. CoNi-layered double hydroxide derived CoS 2/NiS 2 dodecahedron decorated with ReS 2 Z-scheme heterojunction for efficient hydrogen evolution. J Colloid Interface Sci 2025; 679:21-30. [PMID: 39353353 DOI: 10.1016/j.jcis.2024.09.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
The high efficient utilization of light absorption and the effective separation of photogenerated carriers are critical factors in enhancing the performance of photocatalysts. In this study, CoNi-layered double hydroxide was synthesized using zeolitic imidazolate frameworks-67 as a template, followed by calcination to form CoS2/NiS2. Subsequently, ReS2 was deposited onto the surface of CoS2/NiS2, resulting in the ReS2/CoS2/NiS2 photocatalyst demonstrated notable hydrogen evolution activity under visible light, achieving a maximum hydrogen production rate of 40111.8 μmol/g. The construction of the Z-scheme heterojunction was found to facilitate the transfer and separation of photogenerated carriers while extending the lifetime of photogenerated electrons, thereby contributing to the enhancement of photocatalytic activity. This study provides a new approach for the development of sulfide heterojunctions aimed at improving photocatalytic hydrogen production efficiency.
Collapse
Affiliation(s)
- Changdi Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Tingting Ji
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenqian Luan
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Yao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Ruiyang Zhao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jishu Han
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Fang B, Qiu J, Xia G, Wang M, Dai D, Tang Y, Li Y, Yao J. Carboxylated cellulose-derived carbon mediated flower-like bismuth oxyhalides for efficient Cr(VI) reduction under visible light. J Colloid Interface Sci 2025; 678:125-133. [PMID: 39241443 DOI: 10.1016/j.jcis.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Exquisitely tailoring the morphologies of photocatalysts could achieve high activities. In this study, the morphological transformation of bismuth oxyhalide (BiOX, X = Br, I and Cl) from disordered lamellae to regular flowers was facilely achieved via the use of carboxylated cellulose-derived carbon (CDC). The sphere-like structure and abundant surface functional groups of CDC induce the formation of such flower-like morphologies of BiOX/CDC, and this morphology results in a pronounced increase in surface area (e.g., the surface area of BiOBr increases from 3 to 106 m2 g-1) and porosity. Combined with the good light absorption and conductivity of CDC, the flower-like BiOX/CDC exhibited impressive photocatalytic activity under visible light. Regarding the probing Cr(VI) reduction reaction, the representative BiOBr/CDC is capable of reducing 98% of Cr(VI) within 30 min of visible-light illumination, which is markedly greater than those of pure BiOBr (6%) and CDC (16%). Likewise, BiOI/CDC and BiOCl/CDC also have decent photocatalytic Cr(VI) reduction capacities (89% for BiOI/CDC and 69% for BiOCl/CDC) under visible light in comparison with pristine BiOI (13%) and BiOCl (1.5%). This work furnishes a novel and facile approach to tune photocatalyst morphologies and sheds light on the great potential of biomass-derived carbon, which may enlighten the judicious design of photocatalysts with high efficiency.
Collapse
Affiliation(s)
- Biyao Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianhao Qiu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Dehua Tubao New Decoration Material Co., Ltd., Deqing 313299, China.
| | - Guanglu Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjia Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dingliang Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yixin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Xie Y, Dong B, Wang X, Wang S, Chen J, Lou Y. Construction of core-shell CoSe 2/ZnIn 2S 4 heterostructures for efficient visible-light-driven photocatalytic hydrogen evolution. Dalton Trans 2024; 53:675-683. [PMID: 38078462 DOI: 10.1039/d3dt03379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The use of photocatalysts based on semiconductor heterostructures for hydrogen evolution is a prospective tactic for converting solar energy. Herein, visible-light-responsive three-dimensional core-shell CoSe2/ZnIn2S4 heterostructures were successfully fabricated via in situ growth of ZnIn2S4 ultrathin nanosheets on spherical CoSe2. Without any noble metal co-catalysts, the as-prepared CoSe2/ZnIn2S4 composite achieved attractive photocatalytic hydrogen evolution activity under visible light illumination. Optimal CoSe2/ZnIn2S4 achieved a hydrogen evolution rate of 2199 μmol g-1 h-1, which was 7 times higher than that of pristine ZnIn2S4 and even exceeded that of ZnIn2S4 loaded with platinum. In this distinctive core-shell heterostructure, the presence of CoSe2 could considerably improve the ability to harvest light, quicken the charge transfer kinetics, and avoid the agglomeration of ZnIn2S4 nanosheets. Meanwhile, the experimental results demonstrated that the strong interaction between CoSe2 and ZnIn2S4 at the compact interface could appropriately boost the photogenerated electron-hole pair migration and relieve charge recombination, thus improving photocatalytic hydrogen evolution activity. This work has bright prospects in constructing noble-metal-free core-shell heterostructures for solar energy conversion.
Collapse
Affiliation(s)
- Yuhan Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Boyu Dong
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Xuemin Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Siyuan Wang
- Nanjing Foreign Language School, Nanjing, 210008, P. R. China
| | - Jinxi Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
4
|
Zhang S, Zhang G, Wu S, Guan Z, Li Q, Yang J. Fabrication of Co 3O 4@ZnIn 2S 4 for photocatalytic hydrogen evolution: Insights into the synergistic mechanism of photothermal effect and heterojunction. J Colloid Interface Sci 2023; 650:1974-1982. [PMID: 37527602 DOI: 10.1016/j.jcis.2023.07.147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Integration of photothermal materials and photocatalysts can effectively improve photocatalytic hydrogen production. However, the synergistic mechanism of photothermal effect and heterojunction still need to be deeply investigated. Herein, Co3O4@ZnIn2S4 (ZIS) core-shell heterojunction was constructed as a photothermal/ photocatalytic integrated system for photocatalytic hydrogen production. The photothermal effect induced by Co3O4 boosts the surface reaction kinetic of hydrogen evolution with an apparent activation energy decrease from 42.0 kJ⋅mol-1 to 33.5 kJ⋅mol-1. The photothermal effect also increases the charge concentrations of Co3O4@ZIS, which ameliorates the conductivity of Co3O4@ZIS and thus benefits to charge transfer. In addition, a p-n junction forms between Co3O4 and ZIS and provides a built-in electric field to enhance charge separate and prolong charge life time. Benefiting from the synergy of photothermal effect and heterojunction, the photocatalytic performance of Co3O4@ZIS is significantly improved with a highest hydrogen evolution rate of 4515 μmol⋅g-1⋅h-1, which is about 3.5 times higher than that of pure ZIS. This work offers a full perspective to understand the photothermal/photocatalytic integrated conception for solar hydrogen production.
Collapse
Affiliation(s)
- Shengyu Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, Henan, China
| | - Gongxin Zhang
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Shuangzhi Wu
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, Henan, China
| | - Zhongjie Guan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, Henan, China.
| | - Qiuye Li
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, Henan, China.
| | - Jianjun Yang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, Henan, China
| |
Collapse
|
5
|
Wang X, Chen Y. ZnIn2S4/CoFe2O4 p-n junction-decorated biochar as magnetic recyclable nanocomposite for efficient photocatalytic degradation of ciprofloxacin under simulated sunlight. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|