1
|
Zhang M, Lu P, Zheng Y, Huang X, Liu J, Yan H, Quan H, Tan R, Ren F, Jiang H, Zhou J, Liao H. Genome-wide identification of AP2/ERF gene family in Coptis Chinensis Franch reveals its role in tissue-specific accumulation of benzylisoquinoline alkaloids. BMC Genomics 2024; 25:972. [PMID: 39415101 PMCID: PMC11484470 DOI: 10.1186/s12864-024-10883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The Plant-specific AP2/ERF gene family encodes proteins involved in various biological and physiological processes. Although the genome of Coptis chinensis Franch, a plant producing benzylisoquinoline alkaloids (BIAs), has been sequenced at the chromosome level, studies on the AP2/ERF gene family in C. chinensis are lacking. Thus, a genome-wide identification of AP2/ERF gene family in C. chinensis was conducted to explore its role in BIAs biosynthesis. RESULTS A total of 96 CcAP2/ERF genes were identified and categorized into five subfamilies, including 43 ERFs, 32 DREBs, 17 AP2s, 3 RAVs, and 1 Soloist, based on their structural domains. These CcAP2/ERF genes were unevenly distributed across nine chromosomes. Analysis of gene duplication events identified 17 CcAP2/ERF gene pairs in the genome, with 7 involved in tandem duplication events and 10 involved in segmental duplicate events, indicating that both types of duplications contributed to the expansion of the AP2/ERF gene family. The Ka/Ks ratio analysis suggested that the CcAP2/ERF gene family underwent strong purifying selection. Two phytohormones, methyl jasmonate and abscisic acid, were identified as potential key inducers of BIAs biosynthesis due to the cis-acting element prediction. Analysis of the spatial transcriptomic data revealed that 28 differentially expressed AP2/ERF genes had the highest or relatively higher expression levels in the rhizome, 17 of which positively correlated with the tissue-specific accumulation of BIAs. Further real-time PCR verification and protein-protein interaction analysis indicated that DREB1B might be one of the central regulators in a highly complex BIAs biosynthesis network. CONCLUSION These findings provide significant insight into the function of AP2/ERF genes in C. chinensis, particularly in the regulatory network of BIAs biosynthesis in C. chinensis. This study also identifies candidate genes for metabolic engineering to increase BIAs content in C. chinensis.
Collapse
Affiliation(s)
- Mengyu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Pingping Lu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yating Zheng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xue Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Junnan Liu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Rui Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Fengming Ren
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 400010, China
- Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Hezhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
2
|
Huang D, An Q, Huang S, Tan G, Quan H, Chen Y, Zhou J, Liao H. Biomod2 modeling for predicting the potential ecological distribution of three Fritillaria species under climate change. Sci Rep 2023; 13:18801. [PMID: 37914761 PMCID: PMC10620159 DOI: 10.1038/s41598-023-45887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023] Open
Abstract
The Fritillaria species ranked as a well-known traditional medicine in China and has become rare due to excessive harvesting. To find reasonable strategy for conservation and cultivation, identification of new ecological distribution of Fritillaria species together with prediction of those responses to climate change are necessary. In terms of current occurrence records and bioclimatic variables, the suitable habitats for Fritillaria delavayi, Fritillaria taipaiensis, and Fritillaria wabuensis were predicted. In comparison with Maxent and GARP, Biomod2 obtained the best AUC, KAPPA and TSS values of larger than 0.926 and was chosen to construct model. Temperature seasonality was indicated to put the greatest influence on Fritillaria taipaiensis and Fritillaria wabuensis, while isothermality was of most importance for Fritillaria delavayi. The current suitable areas for three Fritillaria species were distributed in south-west China, accounting for approximately 17.72%, 23.06% and 20.60% of China's total area, respectively. During 2021-2100 period, the suitable habitats of F. delavayi and F. wabuensis reached the maximum under SSP585 scenario, while that of F. taipaiensis reached the maximum under SSP126 scenario. The high niche overlap among three Fritillaria species showed correlation with the chemical composition (P ≤ 0.05), while no correlation was observed between niche overlap and DNA barcodes, indicating that spatial distribution had a major influence on chemical composition in the Fritillaria species. Finally, the acquisition of species-specific habitats would contribute to decrease in habitat competition, and future conservation and cultivation of Fritillaria species.
Collapse
Affiliation(s)
- Deya Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Guodong Tan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Yineng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|