1
|
Atyf Z, Lenne Q, Ghilane J. Electrografting of Phenyl Phosphate Layers onto Glassy Carbon for Tuning Catalytic Activity toward the Hydrogen Evolution Reaction. Molecules 2024; 29:835. [PMID: 38398587 PMCID: PMC10892328 DOI: 10.3390/molecules29040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we explored the surface modification of a glassy carbon electrode through the electrografting of 4-Aminophenyl phosphate, which features heteroatoms and ionic properties. The electrochemical grafting process involves reducing in situ-generated diazonium derivatives. The primary objective of this research was to immobilize organic layers and assess their electrochemical and surface properties. Subsequently, the generated surface serves as a template for the electrochemical growth of Pd and Co nanoparticles on functionalized electrodes. The electrocatalytic performances of these hybrid electrodes in driving the hydrogen evolution reaction were investigated. The obtained results indicate an enhancement in the electrocatalytic activity of the modified electrodes, where lower overpotential and higher stability were observed when the catalyst was electrodeposited onto the attached ionic layer. These findings highlight the synergistic effect between the attached phenyl phosphate moieties and electrocatalysts.
Collapse
Affiliation(s)
| | | | - Jalal Ghilane
- Université Paris Cité, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, F-75013 Paris, France; (Z.A.); (Q.L.)
| |
Collapse
|
2
|
Zhang C, Qu P, Zhou M, Qian L, Bai T, Jin J, Xin B. Ionic Liquids as Promisingly Multi-Functional Participants for Electrocatalyst of Water Splitting: A Review. Molecules 2023; 28:molecules28073051. [PMID: 37049827 PMCID: PMC10095915 DOI: 10.3390/molecules28073051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Ionic liquids (ILs), as one of the most concerned functional materials in recent decades, have opened up active perspectives for electrocatalysis. In catalyst preparation, ILs act as characteristic active components besides media and templates. Compared with catalysts obtained using ordinary reagents, IL-derived catalysts have a special structure and catalytic performance due to the influence of IL’s special physicochemical properties and structures. This review mainly describes the use of ILs as modifiers and reaction reagents to prepare electrocatalysts for water splitting. The designability of ILs provides opportunities for the ingenious composition of cations or anions. ILs containing heteroatoms (N, O, S, P, etc.) and transition metal anion (FeCl4−, NiCl3−, etc.) can be used to directly prepare metal phosphides, sulfides, carbides and nitrides, and so forth. The special physicochemical properties and supramolecular structures of ILs can provide growth conditions for catalysts that are different from the normal media environment, inducing special structure and high performance. ILs as heteroatom sources are safe, green and easy to operate compared with traditional heteroatom sources. The strategy for using ILs as reagents is expected to realize 100% atomic transformation of reactants, in line with the concept of green chemistry. This review reflects the discovered work with the best findings from the literature. It will offer readers a deeper understanding on the development of IL-derived electrocatalysts and inspire them to ingeniously design high-performance electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Chenyun Zhang
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Puyu Qu
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Mei Zhou
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Lidong Qian
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Te Bai
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Jianjiao Jin
- School of Intelligent Manufacturing, Wuxi Vocational College of Science and Technology, Wuxi 214028, China
| | - Bingwei Xin
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
- Correspondence: ; Tel.: +86-136-8534-5517
| |
Collapse
|