1
|
Jiang D, He Y, Zhang J, Yin J, Ding J, Wang S, Li H. Conjugate acid-base bi-functional polymeric ionic liquids (CAB-PILs) as efficient catalysts for CO2 capture and subsequent glycidol cycloaddition reaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Qaroush AK, Eftaiha AF, Smadi AH, Assaf KI, Al-Qaisi FM, Alsoubani F. CS 2/CO 2 Utilization Using Mukaiyama Reagent as a (Thio)carbonylating Promoter: A Proof-of-Concept Study. ACS OMEGA 2022; 7:22511-22521. [PMID: 35811893 PMCID: PMC9260919 DOI: 10.1021/acsomega.2c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
We report on the reaction of ethylene-terminated heteroatoms (C2X; X = N, O, and S) with CS2/CO2 using Mukaiyama reagent (2-chloro-1-methylpyridinium iodide, CMPI) as a promoter for the preparation of imidazolidin-2-one, oxazolidin-2-one, 1,3-dioxolan-2-one, 1,3-dithiolan-2-one, and their thione counterparts at ambient temperature and pressure. Spectroscopic measurements, viz., 1H/13C nuclear magnetic resonance (NMR) and ex situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy methods verified the reaction of CS2/CO2 with the ethylene-based substrates and subsequently the formation of cyclic products. The experimental data indicated the formation of the enol-form of imidazolidin-2-one and oxazolidin-2-one, while the keto-form was obtained for their thione correspondents. Furthermore, density functional theory calculations revealed the stability of the keto- over the enol-form for all reactions and pointed out the solvent effect in stabilizing the latter.
Collapse
Affiliation(s)
- Abdussalam K. Qaroush
- Department
of Chemistry, Faculty of Science, The University
of Jordan, Amman 11942, Jordan
| | - Ala’a F. Eftaiha
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Amneh H. Smadi
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Khaleel I. Assaf
- Department
of Chemistry, Faculty of Science, Al-Balqa
Applied University, Al-Salt 19117, Jordan
| | - Feda’a M. Al-Qaisi
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Fatima Alsoubani
- Department
of Chemistry, Faculty of Science, The Hashemite
University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|
3
|
Al-Qaisi FM, Qaroush AK, Okashah IK, Eftaiha A, Vasko P, Alsoubani F, Repo T. The Use of Sustainable Transition Metals for the Cycloaddition of Epoxides and CO2 under Mild Reaction Conditions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Ala'a Eftaiha
- Hashemite University Faculty of Science Chemistry Chemistry Department 13133 Zarqa JORDAN
| | - Petra Vasko
- University of Helsinki City Centre Campus: Helsingin Yliopisto Department of Chemistry FINLAND
| | | | - Timo Repo
- University of Helsinki City Centre Campus: Helsingin Yliopisto Department of Chemistry FINLAND
| |
Collapse
|
4
|
Qaroush AK, Saleh MI, Alsyouri HM, Abu-Daabes MA, Eftaiha AF, Assaf KI, Abu-Zaid R, Abu-Surrah AS, Troll C, Rieger B. In situ activation of green sorbents for CO 2 capture upon end group backbiting. Phys Chem Chem Phys 2022; 24:12293-12299. [PMID: 35543427 DOI: 10.1039/d2cp00837h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermolysis of a urethane end group was observed as a first time phenomenon during activation. This unzipping mechanism revealed a new amine tethering point producing a diamine-terminated oligourea ([10]-OU), acting as a green sorbent for CO2 capturing. The oligomer backbites its end group to form propylene carbonate (PC), as proved by in situ TGA-MS, which can reflect the polymer performance by maximizing its capturing capacity. Cross polarization magic angle spinning (CP-MAS) NMR spectroscopy verified the formation of the proven ionic carbamate (1:2 mechanism) with a chemical shift at 161.7 ppm due to activation desorption at higher temperatures, viz., 100 °C (in vacuo) accompanied with bicarbonate ions (1:1 mechanism) with a peak centered at 164.9 ppm. Fortunately, the amines formed from in situ thermolysis explain the abnormal behavior (carbamates versus bicarbonates) of the prepared sample. Finally, ex situ ATR-FTIR proved the decomposition of urethanes, which can be confirmed by the disappearance of the pre-assigned peak centered at 1691 cm-1. DFT calculations supported the thermolysis of the urethane end group at elevated temperatures, and provided structural insights into the formed products.
Collapse
Affiliation(s)
- Abdussalam K Qaroush
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan. .,WACKER-Lehrstuhl für Makromolekulare Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany.
| | - Maysoon I Saleh
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan.
| | - Hatem M Alsyouri
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Malyuba A Abu-Daabes
- Pharmaceutical and Chemical Engineering Department, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan
| | - Ala'a F Eftaiha
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Khaleel I Assaf
- Department of Chemistry, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Rania Abu-Zaid
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan.
| | - Adnan S Abu-Surrah
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Carsten Troll
- WACKER-Lehrstuhl für Makromolekulare Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany.
| | - Bernhard Rieger
- WACKER-Lehrstuhl für Makromolekulare Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching bei München, Germany.
| |
Collapse
|
5
|
Utilization of CO2-Available Organocatalysts for Reactions with Industrially Important Epoxides. Catalysts 2022. [DOI: 10.3390/catal12030298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent knowledge in chemistry has enabled the material utilization of greenhouse gas (CO2) for the production of organic carbonates using mild reaction conditions. Organic carbonates, especially cyclic carbonates, are applicable as green solvents, electrolytes in batteries, feedstock for fine chemicals and monomers for polycarbonate production. This review summarizes new developments in the ring opening of epoxides with subsequent CO2-based formation of cyclic carbonates. The review highlights recent and major developments for sustainable CO2 conversion from 2000 to the end of 2021 abstracted by Web of Science. The syntheses of epoxides, especially from bio-based raw materials, will be summarized, such as the types of raw material (vegetable oils or their esters) and the reaction conditions. The aim of this review is also to summarize and to compare the types of homogeneous non-metallic catalysts. The three reaction mechanisms for cyclic carbonate formation are presented, namely activation of the epoxide ring, CO2 activation and dual activation. Usually most effective catalysts described in the literature consist of powerful sources of nucleophile such as onium salt, of hydrogen bond donors and of tertiary amines used to combine epoxide activation for facile epoxide ring opening and CO2 activation for the subsequent smooth addition reaction and ring closure. The most active catalytic systems are capable of activating even internal epoxides such as epoxidized unsaturated fatty acid derivatives for the cycloaddition of CO2 under relatively mild conditions. In case of terminal epoxides such as epichlorohydrin, the effective utilization of diluted sources of CO2 such as flue gas is possible using the most active organocatalysts even at ambient pressure.
Collapse
|
6
|
Eftaiha AF, Qaroush AK, Hasan AK, Helal W, Al-Qaisi FM. CO 2 fixation into cyclic carbonates catalyzed by single-site aprotic organocatalysts. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00157h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The catalytic activity of a series of onium salts for the synthesis of cyclic carbonates have been investigated experimentally and theoretically.
Collapse
Affiliation(s)
- Ala'a F. Eftaiha
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Abdussalam K. Qaroush
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Areej K. Hasan
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Wissam Helal
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Feda'a M. Al-Qaisi
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| |
Collapse
|