1
|
An Y, Shen Z, Zhang F, Yang Q, Han Z, Wang M, Ma H, Yu L, Yuan W, Sui K. Inversion of Circularly Polarized Luminescence in the Left-Handed Chitosan-Templated Co-assemblies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415260. [PMID: 39887652 DOI: 10.1002/advs.202415260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/30/2024] [Indexed: 02/01/2025]
Abstract
Circularly polarized luminescence (CPL) materials are attractive due to their unique applications in fields such as 3D displays, information encryption, and chiroptical switches. Natural biomolecules-based CPL materials are gaining plenty of attention due to their chiral diversity and sustainability. However, it is still challenging to construct CPL materials with opposite CPL signs from a single natural biomolecule due to its inherent chirality. Here, chiral assemblies with opposite CPL signs using chitosan oligosaccharide (COS) and achiral luminescent dyes are successfully prepared. It is found that COS can serve as a chiral template to induce the ordered assembly of the dyes along the polymer chain through electrostatic attraction interaction. It is demonstrated experimentally that the structural planarity of the dye molecules is crucial for the formation of chiral co-assemblies. Interestingly, the left-handed COS-templated co-assemblies can emit CPL with opposite handedness, which is controlled by the helicity degree of the co-assemblies. This study not only deepens the understanding of the complex assembly of natural biomacromolecules but also provides new insights into the design and construction of CPL materials.
Collapse
Affiliation(s)
- Yu An
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zhaocun Shen
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Fang Zhang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Qiuya Yang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Zihan Han
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Mingjie Wang
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Hongze Ma
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Linjie Yu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Key Laboratory of Shandong Provincial Universities for Advanced Fibers and Composites, Qingdao University, 308 Ningxia Road, Qingdao, 266071, P. R. China
| |
Collapse
|
2
|
Kataria M, Seki S. Responsive Chirality: Tailoring Supramolecular Assemblies with External Stimuli as Future Platforms for Electronic/Spintronic Materials. Chemistry 2025; 31:e202403460. [PMID: 39462198 DOI: 10.1002/chem.202403460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Supramolecular chirality is the major branch of supramolecular chemistry, which not only plays important roles in biological processes but also in synthetically designed aggregated systems. To understand the complex processing of biological systems, the only way is to design supramolecular chiral ensembles that mimic natural biomolecules such as Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), amino acids, etc. In addition, chiral systems and self-assemblies as molecular motifs with breaking spatial inversion symmetry have been regarded as key substances in electronics and spintronics as well as in fundamental chemistry and physics. Here, in this review, our major concern is understanding modulation in spatial arrangements and packing modes under the impact of any external stimuli, which results in tailoring the handedness of resulted supramolecular chiral superstructures. We, in this review, highlighted the role of external stimuli such as solvent, chemical additives, photo exposure, etc. in altering the supramolecular chirality for their future utility as "active switches" in optoelectronic and spintronic devices and applications.
Collapse
Affiliation(s)
- Meenal Kataria
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Kyoto University, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
3
|
Fu K, Qu DH, Liu G. Reversible Circularly Polarized Luminescence Inversion and Emission Color Switching in Photo-Modulated Supramolecular Polymer for Multi-Modal Information Encryption. J Am Chem Soc 2024; 146:33832-33844. [PMID: 39606825 DOI: 10.1021/jacs.4c12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Constructing circularly polarized luminescence (CPL) materials that exhibit dynamic handedness inversion and emissive color modulation for multimodal information encryption presents both a significant challenge and a compelling opportunity. Here, we have developed a pyridinethiazole acrylonitrile-cholesterol derivative (Z-PTC) that exhibits wavelength-dependent photoisomerization and photocyclization, enabling dynamic handedness inversion and emissive color modulation in supramolecular assemblies with decent CPL activity. Coordination with Ag+ ions form the Z-PTC Ag supramolecular polymer (SP1), which assembles into nanotubes displaying enhanced positive yellow-green CPL. Irradiation at 454 nm transforms SP1 into nanospheres of a mixture supramolecular polymer (SP2) of Z/E-PTC Ag, displaying inverted supramolecular chirality and emitting negative orange-yellow CPL. Reheating SP2 to 343 K restores the original nanotube structure via excellent reversible photoisomerization. Exposure to 365 nm light also induces CPL inversion from positive to negative and triggers morphological changes from SP1 to SP2. Prolonged irradiation causes further transformation into irregular supramolecular aggregate, shifting the emission color to blue and eliminating CPL. These dynamic properties of the multicolor CPL system, including reversible handedness inversion, can also be realized in the semisolid state, exhibiting promising potential for multimodal information encryption applications with enhanced security and complexity.
Collapse
Affiliation(s)
- Kuo Fu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Guofeng Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
4
|
He J, Hara M, Ohnuki R, Yoshioka S, Ikai T, Takeoka Y. Circularly Polarized Luminescence Chirality Inversion and Dual Anticounterfeiting Labels Based on Fluorescent Cholesteric Liquid Crystal Particles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43991-44003. [PMID: 39054591 DOI: 10.1021/acsami.4c08331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of materials with circularly polarized luminescence (CPL) properties is a promising but challenging frontier in advanced materials science. Modulating the chiral properties of chiral polymers has also been a focus of research. Studies have been conducted to control the ground-state chirality of chiral polymers by adjusting the concentration of the chiral dopant. However, the chirality inversion of CPL of fluorescent liquid crystal particles by chiral dopant concentration has not been reported. Here, we report the preparation of fluorescent cholesteric liquid crystal (FCLC) particles that display polarizable structural color and CPL, demonstrating how varying the chiral dopant amount can reverse the CPL direction, leading to systems where the rotation directions of polarizable structural color and CPL either align or differ. This study confirmed the critical role played by the formation of the twist grain boundary phase in inducing the inversion of the ground-state chirality of FCLC particles and, subsequently, triggering the inversion process of CPL chirality. Furthermore, it leverages chiral structural color and fluorescence of FCLC particles to develop a sophisticated dual verification system. This system, utilizing both circularly polarized light and fluorescence, offers enhanced anticounterfeiting protection for high-value items.
Collapse
Affiliation(s)
- Jialei He
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mitsuo Hara
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Ryosuke Ohnuki
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Shinya Yoshioka
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Yamazaki, Noda 278-8510, Japan
| | - Tomoyuki Ikai
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
5
|
Yao L, Fu K, Wang X, He M, Zhang W, Liu PY, He YP, Liu G. Metallophilic Interaction-Mediated Hierarchical Assembly and Temporal-Controlled Dynamic Chirality Inversion of Metal-Organic Supramolecular Polymers. ACS NANO 2023; 17:2159-2169. [PMID: 36648130 DOI: 10.1021/acsnano.2c08315] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal-organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the mPAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag+/mPAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu2+/mPAzPCC and Mn2+/mPAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu2+/mPAzPCC, Mn2+/mPAzPCC, and Bi3+/mPAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal-organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing.
Collapse
Affiliation(s)
- Longfei Yao
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Xuejuan Wang
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Menglu He
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| | - Wannian Zhang
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, People's Republic of China
| | - Peng-Yu Liu
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, People's Republic of China
| | - Yu-Peng He
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, People's Republic of China
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
6
|
pH and Salt-Assisted Macroscopic Chirality Inversion of Gadolinium Coordination Polymer. Molecules 2022; 28:molecules28010163. [PMID: 36615357 PMCID: PMC9821918 DOI: 10.3390/molecules28010163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The precise adjustment of handedness of helical architectures is important to regulate their functions. Macroscopic chirality inversion has been achieved in organic supramolecular systems by pH, metal ions, solvents, chiral and non-chiral additives, temperature, and light, but rarely in coordination polymers (CPs). In particular, salt-assisted macroscopic chirality inversion has not been reported. In this work, we carried out a systematic investigation on the role of pH and salt in regulating the morphology of CPs based on Gd(NO3)3 and R-(1-phenylethylamino)methylphosphonic acid (R-pempH2). Without extra NO3-, the chirality inversion from the left-handed superhelix R-M to the right-handed superhelix R-P can be achieved by pH modulation from 3.2 to 3.8. The addition of NaNO3 (2.0 eq) at pH 3.8 results in an inversion of chiral sense from R-P to R-M as a pure phase. To our knowledge, this is the first example of salt-assisted macroscopic helical inversion in artificial systems.
Collapse
|
7
|
Wang Y, Liu C, Fu K, Liang J, Pang S, Liu G. Multiple chirality inversion of pyridine Schiff-base cholesterol-based metal-organic supramolecular polymers. Chem Commun (Camb) 2022; 58:9520-9523. [PMID: 35924492 DOI: 10.1039/d2cc02680e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Based on a metal coordination driven co-assembly strategy, a metal-organic supramolecular polymer system of pyridine Schiff-base cholesterol and metal ions with multiple supramolecular chirality inversion was successfully achieved by the stoichiometry and exchange of metal ions (such as Co2+, Ni2+, Cu2+, Zn2+, and Ag+), as well as the solvent polarity.
Collapse
Affiliation(s)
- Yanbin Wang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China.
| | - Chongtao Liu
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China. .,Shanghai Key Laboratory of Chemical Assessment and Sustainability, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Kuo Fu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Junxi Liang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China.
| | - Shaofeng Pang
- Chemical Engineering Institute, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China.
| | - Guofeng Liu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Advanced Research Institute, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
8
|
Wu L, Liu W, Li Y, Yang Y. Self-assembly driven chiral transfer from a dipeptide to the twist and stacking handedness of cyanobiphenylyl groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj01259f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chiral transfer phenomenon was studied on four Ala–Ala lipodipeptides with a cyanobiphenylyl group at the terminal alkyl chain.
Collapse
Affiliation(s)
- Lijia Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Fu F, Zhang X, Zhou S, Shi W, Li J, Yu J, Rao Y, Wu L, Cao J. Non-salen coumarin Schiff base chiral fluorescent probe turn on circularly polarized luminescence by Mg 2+ and Zn 2+. NEW J CHEM 2022. [DOI: 10.1039/d1nj05817g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
L1 can be used as highly sensitive dual detection ion probe for Mg2+ and Zn2+. Mg2+ and Zn2+ can turn on the CPL emission of L1. L1 showed reversible fluorescence “on/off” response with Zn2+ and EDTA.
Collapse
Affiliation(s)
- Fubin Fu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Xueyan Zhang
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Shengquan Zhou
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Wei Shi
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jiangmin Li
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jiajia Yu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yanzhao Rao
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Lei Wu
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Jing Cao
- College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, China
| |
Collapse
|