Haritha Kumari A, Jagadesh Kumar J, Sharadha N, Rama Krishna G, Jannapu Reddy R. Visible-Light-Induced Radical Sulfonylative-Cyclization Cascade of 1,6-Enynol Derivatives with Sulfinic Acids: A Sustainable Approach for the Synthesis of 2,3-Disubstituted Benzoheteroles.
CHEMSUSCHEM 2024;
17:e202400227. [PMID:
38650432 DOI:
10.1002/cssc.202400227]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Benzoheteroles are promising structural scaffolds in the realm of medicinal chemistry, but sustainable synthesis of 2,3-difunctionalized benzoheterole derivatives is still in high demand. Indeed, we have conceptually rationalized the intrinsic reactivity of propargylic-enyne systems for the flexible construction of 2,3-disubstituted benzoheteroles through radical sulfonylative-cyclization cascade under organophotoredox catalysis. We hereby report an efficient visible-light-induced sulfonyl radical-triggered cyclization of 1,6-enynols with sulfinic acids under the dual catalytic influence of 4CzIPN and NiBr2⋅DME, which led to the formation of 2,3-disubstituted benzoheteroles in good to high yields. Additionally, the Rose Bengal (RB)-catalyzed radical sulfonylative-cycloannulation of acetyl-derived 1,6-enynols with sulfinic acids under blue LED irradiation allowed to access 3-(E-styryl)-derived benzofurans and benzothiophenes in moderate to good yields. The scope and limitations of the present strategies were successfully established using different classes of 1,6-enynols and sulfinic acids bearing various sensitive functional groups, yielding the desired products in a highly stereoselective fashion. Plausible mechanistic pathways were also proposed based on the current experimental and control experiments.
Collapse