Zhang R, Lan J, Chen Q, Liu Y, Hu L, Cao J, Zhao H, Shen Y. Hesperidin Alleviates Acute Necrotizing Pancreatitis by Activating SIRT1 - Molecular Docking, Molecular Dynamics Simulation, and Experimental Validation.
Comb Chem High Throughput Screen 2024;
27:1745-1757. [PMID:
37534793 DOI:
10.2174/1386207326666230803140408]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND
Acute necrotizing pancreatitis is a serious pancreatic injury with limited effective treatments. This study aims to investigate the therapeutic effects of hesperidin on Larginine- induced acute pancreatitis and its potential targets.
METHODS
The authors induced acute pancreatitis in mice by administering two hourly intraperitoneal injections of L-arginine-HCl, and evaluated the impact of hesperidin on pancreatic and lung tissues, plasma amylase activity, and myeloperoxidase content. Additionally, necrosis and mitochondrial function was tested in primary pancreatic acinar cells. The interactions between hesperidin and proteins involved in necrosis and mitochondrial dysfunction were further invested using in silico molecular docking and molecular dynamic simulations.
RESULTS
Hesperidin effectively ameliorated the severity of acute necrotizing pancreatitis by reducing plasma amylase, pancreatic MPO, serum IL-6 levels, pancreatic edema, inflammation, and pancreatic necrosis. Hesperidin also protected against acute pancreatitis-associated lung injury and prevented acinar cell necrosis, mitochondrial membrane potential loss, and ATP depletion. In addition, hesperidin exhibited a high binding affinity with SIRT1 and increased the protein levels of SIRT1. The SIRT1 inhibitor EX527 abolished the protective effect of hesperidin against necrosis in acinar cells.
CONCLUSION
These findings indicate that hesperidin alleviates the severity of acute necrotizing pancreatitis by activating SIRT1, which may provide insight into the mechanisms of natural compounds in treating AP. Hesperidin has potential as a therapeutic agent for acute necrotizing pancreatitis and provides a new approach for novel therapeutic strategies.
Collapse