1
|
Ramasamy SS, Adhigaman K, Nandakumar V, Sundarasamy A, Jagadeesan S, Saravanakumar M, Malecki JG, Easwaran N, Thangaraj S. In-Silico exploration: Unraveling the anti-cancer potential of 8-Nitroquinoline hydrazides. J Mol Struct 2025; 1321:140218. [DOI: 10.1016/j.molstruc.2024.140218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Moulishankar A, Sankaranarayanan M, Thirugnanasambandam S, Dhamotharan J, Mohanradja D, Sivakumar PM. Identification of novel DNA gyrase inhibitor by combined pharmacophore modeling, QSAR analysis, molecular docking, molecular dynamics, ADMET and DFT approaches. Acta Trop 2024; 260:107460. [PMID: 39527993 DOI: 10.1016/j.actatropica.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
DNA gyrase, an ATP-dependent enzyme, plays a critical role in DNA replication, transcription, and recombination in Mycobacterium tuberculosis (MTB). While fluoroquinolones are effective antibacterial agents targeting DNA gyrase, their clinical use is often limited due to side effects and the emergence of bacterial resistance. In this study, we developed a quantitative structure-activity relationship (QSAR) model to predict the anti-tubercular activity of Quinoline-Aminopiperidine derivatives targeting the DNA gyrase enzyme, using a dataset of 48 compounds obtained from the literature. The QSAR model was validated using both internal and external validation metrics. Model 4, the best predictive model, demonstrated a strong fit with an R² of 0.8393, an adjusted R² (R²adj) of 0.8010, and a lack of fit (LOF) parameter of 0.0626. The QSAR results revealed that DNA gyrase inhibition is significantly influenced by factors such as partition coefficient, molecular flexibility, hydrogen bonding potential, and the presence of fluorine atoms. Twelve quinoline-aminopiperidine derivatives were designed, and their anti-tubercular activity was predicted using QSAR model-4. These compounds were further assessed for pharmacokinetic properties, toxicity, and binding affinity to DNA gyrase. Pharmacophore modeling was also performed and validated using MOE software. The final pharmacophore model includes the features of two aromatic hydrophobic features, one hydrogen bond acceptor, and one hydrogen bond donor. The results indicated that designed compounds QA-3 and dataset compounds C-34 exhibit favorable drug-likeness properties. Molecular dynamics simulations confirmed the stable binding of compounds QA-3 and C-34 to the DNA gyrase protein, highlighting their potential as promising anti-tubercular agents. The developed QSAR Model-4 will facilitate the prediction of anti-tubercular activity in Quinoline-Aminopiperidine derivatives.
Collapse
Key Words
- %A, Percent ratio of active compounds in the hit list
- %Y, Number of active Compounds percent of yields
- ADMET study
- ADMET, Absorption Distribution Metabolism Excretion, Toxicity
- ATP, Adenosine triphosphate
- Abbriviations: QSAR, Quantitative Structure-Activity Relationship
- Aro, aromatic center
- B3LYP, Beck's three-parameter hybrid functional
- CCC, concordance correlation coefficient
- DFT, Density functional theory
- DOTS, Directly Observed Therapy Short-course
- E, enrichment factor
- FNs, false negatives
- FPs, false positives
- GA, genetic algorithms
- GH, Güner-Henry score or Goodness of hit score
- HBA, hydrogen bond acceptor
- HBD, hydrogen bond donar
- HBD, hydrogen bond donor
- HOMO, Highest occupied molecular orbital
- Ht, Hit list
- HydA, hydrophobic atom
- LMO, Leave many out
- LOF, Friedman's lack of fit
- LOO, leave one out
- LUMO, Lowest unoccupied molecular orbital
- MAE, Mean absolute error
- MDR-Tb, multidrug resistance tuberculosis
- MDS, Molecular dynamics simulation
- MIC, minimum inhibitory concentration
- MLR, multiple linear regressions
- MMV, Molegro Molecular Viewer
- MOE, Molecular Operating Environment
- Molecular modeling
- Mycobacterium tuberculosis
- OECD, Organisation for Economic Co-operation and Development
- OLS, Ordinary Least Squares
- PDB, Protein Data Bank
- PiN, Pi ring normal or aromatic ring
- Q(2)(LOO), Cross validation
- QSAR
- Quinoline – aminopiperidine derivatives
- R(2)(ad), Adjusted coefficient of determination
- R(2), Coefficient of determination
- RMSD, Root mean square deviation
- RMSE, Root mean square error
- RMSF, Root mean square fluctuation
- S, Standard deviation
- TB, Tuberculosis
- TNs, true negatives
- TPs, true positives
- VMD, Visual Molecular Dynamics
- WHO, World Health Organization
- XDR-Tb, extensive drug resistance tuberculosis
- logP, Partition coefficient
- pMIC, logarithmic scale of the minimum inhibitory concentration
Collapse
Affiliation(s)
- Anguraj Moulishankar
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India
| | - Murugesan Sankaranarayanan
- Medicinal Chemsitry Research Laboratory, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Sundarrajan Thirugnanasambandam
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamil Nadu, India.
| | - Jothieswari Dhamotharan
- Department of Pharmaceutical Analysis, Sri Venkateswara College of Pharmacy, Rvs Nagar, Tirupati Road, Chittoor 517127, Andhra Pradesh, India
| | - Dhanalakshmi Mohanradja
- Department of Pharmaceutical Analysis, SMVEC Pharmacy College, Madagadipet 605107, Puducherry, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
3
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Agustar HK, Ismail N, Ling LY, Hassan NI. Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond. Eur J Med Chem 2024; 264:116043. [PMID: 38118392 DOI: 10.1016/j.ejmech.2023.116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/22/2023]
Abstract
Amongst heterocyclic compounds, quinoline and its derivatives are advantaged scaffolds that appear as a significant assembly motif for developing new drug entities. Aminoquinoline moiety has gained significant attention among researchers in the 21stcentury. Considering the biological and pharmaceutical importance of aminoquinoline derivatives, herein, we review the recent developments (since 2019) in various biological activities of the 4-aminoquinoline scaffold hybridized with diverse heterocyclic moieties such as quinoline, pyridine, pyrimidine, triazine, dioxine, piperazine, pyrazoline, piperidine, imidazole, indole, oxadiazole, carbazole, dioxole, thiazole, benzothiazole, pyrazole, phthalimide, adamantane, benzochromene, and pyridinone. Moreover, by gaining knowledge about SARs, structural insights, and molecular targets, this review may help medicinal chemists design cost-effective, selective, safe, and more potent 4-aminoquinoline hybrids for diverse biological activities.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, United Kingdom
| | - Hani Kartini Agustar
- Department of Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Norzila Ismail
- Department of Pharmacology, School of Medicinal Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
4
|
Ghomi MK, Dastyafteh N, Montazer MN, Noori M, Mojtabavi S, Faramarzi MA, Hashemi SM, Mahdavi M. Synthesis, in vitro potency of inhibition, enzyme kinetics and in silico studies of quinoline-based α-glucosidase inhibitors. Sci Rep 2024; 14:501. [PMID: 38177164 PMCID: PMC10766639 DOI: 10.1038/s41598-023-50711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024] Open
Abstract
Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target α-glucosidase, which catalyzes starch hydrolysis in the intestine. In an attempt to find potential α-glucosidase inhibitors, a series of twenty new quinoline linked benzothiazole hybrids (8a-t) were synthesized in good yields from suitable reaction procedures and their chemical structures were analyzed by 1HNMR, 13CNMR, IR, and ESI-MS analysis. The synthesized derivatives further screened for their activity against α-glucosidase. Among them, compounds 8b, 8h, 8n and 8o exhibited remarkable α-glucosidase inhibitory activity with IC50 values ranging from 38.2 ± 0.3 to 79.9 ± 1.2 µM compared with standard drug acarbose (IC50 = 750.0 ± 2.0 µM). Enzyme kinetic studies of the most active compound (8h) indicated a non-competitive inhibition with Ki value of 38.2 µM. Moreover, the homology modeling, molecular docking and molecular dynamics simulation studies were conducted to reveal key interactions between the most active compound 8h and the targeted enzyme. These results are complementary to the experimental observations. In order to predict the druggability of the novel derivatives, the pharmacokinetic properties were also applied. These findings could be useful for the design and development of new α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Mahdieh Hashemi
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Sharma B, Agarwal A, Awasthi SK. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023; 14:1227-1253. [PMID: 37484560 PMCID: PMC10357931 DOI: 10.1039/d3md00083d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023] Open
Abstract
Despite effective prevention methods, malaria is a devastating, persistent infection caused by protozoal parasites that result in nearly half a million fatalities annually. Any progress made thus far in the eradication of the disease is jeopardized by the expansion of malaria parasites that have evolved to become resistant to a wide range of drugs, including first-line therapy. To surmount this significant obstacle, it is necessary to develop newly synthesized drugs with multiple modes of action that may have a novel target in various stages of Plasmodium parasite development and this is made possible by the hybridization concept. Hybridization is the combination of at least two diverse pharmacophore units with some linkers bringing about a single molecule with a diverse mode of action. It intensifies a drug's physiological and chemical characteristics, such as absorption, cellular target contact, metabolism, excretion, distribution, and toxicity. This review article outlines the currently published most potent hybrid drugs against the Plasmodium species.
Collapse
Affiliation(s)
- Bhawana Sharma
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| | - Alka Agarwal
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University Varanasi-221005 Uttar Pradesh India
| | - Satish Kumar Awasthi
- Chemical Biology Laboratory, Department of Chemistry, University of Delhi Delhi-110007 India
| |
Collapse
|
6
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem 2023; 256:115458. [PMID: 37163950 DOI: 10.1016/j.ejmech.2023.115458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Malaria is the fifth most lethal parasitic infection in the world. Antimalarial medications have played a crucial role in preventing and eradicating malaria. Numerous heterocyclic moieties have been incorporated into the creation of effective antimalarial drugs. The 4-aminoquinoline moiety is favoured in antimalarial drug discovery due to the diverse biological applications of its derivative. Since the 1960s, 4-aminoquinoline has been an important antimalarial drug due to its low toxicity, high tolerability, and rapid absorption after administration. This review focused on the antimalarial efficacy of the 4-aminoquinoline moiety hybridised with various heterocyclic scaffolds developed by scientists since 2018 against diverse Plasmodium clones. It could aid in the future development of more effective antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
7
|
Quinoline Derivatives with Different Functional Groups: Evaluation of Their Catecholase Activity. Catalysts 2022. [DOI: 10.3390/catal12111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this work, we are interested in finding new catalysts for catecholase, whose principle is based on the oxidation reaction of catechol to o-quinone. In this context, we have studied a series of seven quinoline-based compounds. The present work indicates that the complexes formed between seven selected quinoline compounds and the copper salts viz. Cu(OAc)2, CuSO4, Cu(NO3)2, and CuCl2 elicit catalytic activities for the oxidation of catechol to o-quinone. The complexes formed with the Cu(OAc)2 salt show a much higher catalytic activity than the others, whereas the Cu(NO3)2 and CuCl2 salts formed complexes with low catalytic activity. This study also shows that the oxidation rate depends on two factors, namely the chemical structure of the ligands and the nature of the ions coordinated with the copper.
Collapse
|