1
|
Li J, Chen B, Fu Z, Mao J, Liu L, Chen X, Zheng M, Wang CY, Wang C, Guo YW, Xu B. Discovery of a terpene synthase synthesizing a nearly non-flexible eunicellane reveals the basis of flexibility. Nat Commun 2024; 15:5940. [PMID: 39009563 PMCID: PMC11250809 DOI: 10.1038/s41467-024-50209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Eunicellane diterpenoids, containing a typical 6,10-bicycle, are bioactive compounds widely present in marine corals, but rarely found in bacteria and plants. The intrinsic macrocycle exhibits innate structural flexibility resulting in dynamic conformational changes. However, the mechanisms controlling flexibility remain unknown. The discovery of a terpene synthase, MicA, that is responsible for the biosynthesis of a nearly non-flexible eunicellane skeleton, enable us to propose a feasible theory about the flexibility in eunicellane structures. Parallel studies of all eunicellane synthases in nature discovered to date, including 2Z-geranylgeranyl diphosphate incubations and density functional theory-based Boltzmann population computations, reveale that a trans-fused bicycle with a 2Z-configuration alkene restricts conformational flexibility resulting in a nearly non-flexible eunicellane skeleton. The catalytic route and the enzymatic mechanism of MicA are also elucidated by labeling experiments, density functional theory calculations, structural analysis of the artificial intelligence-based MicA model, and mutational studies.
Collapse
Affiliation(s)
- Jinfeng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Bao Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Zunyun Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jingjing Mao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Xiaochen Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chengyuan Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.
| |
Collapse
|
2
|
Wang C, Fan Y, Wang C, Tang J, Qiu Y, Xu K, Ding Y, Liu Y, Ying Y, Wang H. Discovery of Prenyltransferase-Guided Hydroxyphenylacetic Acid Derivatives from Marine Fungus Penicillium sp. W21C371. Mar Drugs 2024; 22:296. [PMID: 39057405 PMCID: PMC11278016 DOI: 10.3390/md22070296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Traditional isolation methods often lead to the rediscovery of known natural products. In contrast, genome mining strategies are considered effective for the continual discovery of new natural products. In this study, we discovered a unique prenyltransferase (PT) through genome mining, capable of catalyzing the transfer of a prenyl group to an aromatic nucleus to form C-C or C-O bonds. A pair of new hydroxyphenylacetic acid derivative enantiomers with prenyl units, (±)-peniprenydiol A (1), along with 16 known compounds (2-17), were isolated from a marine fungus, Penicillium sp. W21C371. The separation of 1 using chiral HPLC led to the isolation of the enantiomers 1a and 1b. Their structures were established on the basis of extensive spectroscopic analysis, including 1D, 2D NMR and HRESIMS. The absolute configurations of the new compounds were determined by a modified Mosher method. A plausible biosynthetic pathway for 1 was deduced, facilitated by PT catalysis. In the in vitro assay, 2 and 3 showed promising inhibitory activity against Escherichia coli β-glucuronidase (EcGUS), with IC50 values of 44.60 ± 0.84 μM and 21.60 ± 0.76 μM, respectively, compared to the positive control, D-saccharic acid 1,4-lactone hydrate (DSL). This study demonstrates the advantages of genome mining in the rational acquisition of new natural products.
Collapse
Affiliation(s)
- Cancan Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ye Fan
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenjie Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Tang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yixian Qiu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Keren Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yingjia Ding
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Liu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Youmin Ying
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat Prod Rep 2024; 41:885-904. [PMID: 38351834 PMCID: PMC11186733 DOI: 10.1039/d3np00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/20/2024]
Abstract
Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christian Geibel
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri - Kansas City, Kansas City, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, USA.
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, USA.
| |
Collapse
|
4
|
Tang J, Matsuda Y. Discovery of fungal onoceroid triterpenoids through domainless enzyme-targeted global genome mining. Nat Commun 2024; 15:4312. [PMID: 38773118 PMCID: PMC11109268 DOI: 10.1038/s41467-024-48771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/09/2024] [Indexed: 05/23/2024] Open
Abstract
Genomics-guided methodologies have revolutionized the discovery of natural products. However, a major challenge in the field of genome mining is determining how to selectively extract biosynthetic gene clusters (BGCs) for untapped natural products from numerous available genome sequences. In this study, we developed a fungal genome mining tool that extracts BGCs encoding enzymes that lack a detectable protein domain (i.e., domainless enzymes) and are not recognized as biosynthetic proteins by existing bioinformatic tools. We searched for BGCs encoding a homologue of Pyr4-family terpene cyclases, which are representative examples of apparently domainless enzymes, in approximately 2000 fungal genomes and discovered several BGCs with unique features. The subsequent characterization of selected BGCs led to the discovery of fungal onoceroid triterpenoids and unprecedented onoceroid synthases. Furthermore, in addition to the onoceroids, a previously unreported sesquiterpene hydroquinone, of which the biosynthesis involves a Pyr4-family terpene cyclase, was obtained. Our genome mining tool has broad applicability in fungal genome mining and can serve as a beneficial platform for accessing diverse, unexploited natural products.
Collapse
Affiliation(s)
- Jia Tang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
5
|
Pelton JM, Hochuli JE, Sadecki PW, Katoh T, Suga H, Hicks LM, Muratov EN, Tropsha A, Bowers AA. Cheminformatics-Guided Cell-Free Exploration of Peptide Natural Products. J Am Chem Soc 2024; 146:8016-8030. [PMID: 38470819 PMCID: PMC11151186 DOI: 10.1021/jacs.3c11306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
There have been significant advances in the flexibility and power of in vitro cell-free translation systems. The increasing ability to incorporate noncanonical amino acids and complement translation with recombinant enzymes has enabled cell-free production of peptide-based natural products (NPs) and NP-like molecules. We anticipate that many more such compounds and analogs might be accessed in this way. To assess the peptide NP space that is directly accessible to current cell-free technologies, we developed a peptide parsing algorithm that breaks down peptide NPs into building blocks based on ribosomal translation logic. Using the resultant data set, we broadly analyze the biophysical properties of these privileged compounds and perform a retrobiosynthetic analysis to predict which peptide NPs could be directly synthesized in augmented cell-free translation reactions. We then tested these predictions by preparing a library of highly modified peptide NPs. Two macrocyclases, PatG and PCY1, were used to effect the head-to-tail macrocyclization of candidate NPs. This retrobiosynthetic analysis identified a collection of high-priority building blocks that are enriched throughout peptide NPs, yet they had not previously been tested in cell-free translation. To expand the cell-free toolbox into this space, we established, optimized, and characterized the flexizyme-enabled ribosomal incorporation of piperazic acids. Overall, these results demonstrate the feasibility of cell-free translation for peptide NP total synthesis while expanding the limits of the technology. This work provides a novel computational tool for exploration of peptide NP chemical space, that could be expanded in the future to allow design of ribosomal biosynthetic pathways for NPs and NP-like molecules.
Collapse
Affiliation(s)
- Jarrett M. Pelton
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joshua E. Hochuli
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Patric W. Sadecki
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Eugene N. Muratov
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Tropsha
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Yan D, Matsuda Y. Global genome mining-driven discovery of an unusual biosynthetic logic for fungal polyketide-terpenoid hybrids. Chem Sci 2024; 15:3011-3017. [PMID: 38404388 PMCID: PMC10882540 DOI: 10.1039/d3sc06001b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024] Open
Abstract
Genome mining has facilitated the efficient discovery of untapped natural products. We performed global genome mining in fungi and discovered a series of biosynthetic gene clusters (BGCs) that appeared to afford polyketide-terpenoid hybrids via a distinct biosynthetic mechanism from those adopted by known pathways. Characterization of one of the BGCs revealed that it yields the drimane-phthalide hybrid 1. During the biosynthesis of 1, the farnesyl group is unusually introduced by the dimethylallyltryptophan synthase-type prenyltransferase MfmD and is then cyclized by the Pyr4-family terpene cyclase MfmH. The replacement of MfmH with its homologue OcdTC gave another hybrid molecule with a monocyclic terpenoid moiety. Moreover, PsetPT, an MfmD homologue, was found to perform dimethylallylation and was then engineered to install a geranyl group. Our study unraveled an unusual biosynthetic mechanism for fungal phthalide-terpenoid hybrids and provided insights into how their structural diversification could be achieved.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong Tat Chee Avenue Kowloon Hong Kong SAR China
| |
Collapse
|
7
|
Yan X, Qi Y, Yao X, Zhou N, Ye X, Chen X. DNMT3L inhibits hepatocellular carcinoma progression through DNA methylation of CDO1: insights from big data to basic research. J Transl Med 2024; 22:128. [PMID: 38308276 PMCID: PMC10837993 DOI: 10.1186/s12967-024-04939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND DNMT3L is a crucial DNA methylation regulatory factor, yet its function and mechanism in hepatocellular carcinoma (HCC) remain poorly understood. Bioinformatics-based big data analysis has increasingly gained significance in cancer research. Therefore, this study aims to elucidate the role of DNMT3L in HCC by integrating big data analysis with experimental validation. METHODS Dozens of HCC datasets were collected to analyze the expression of DNMT3L and its relationship with prognostic indicators, and were used for molecular regulatory relationship evaluation. The effects of DNMT3L on the malignant phenotypes of hepatoma cells were confirmed in vitro and in vivo. The regulatory mechanisms of DNMT3L were explored through MSP, western blot, and dual-luciferase assays. RESULTS DNMT3L was found to be downregulated in HCC tissues and associated with better prognosis. Overexpression of DNMT3L inhibits cell proliferation and metastasis. Additionally, CDO1 was identified as a target gene of DNMT3L and also exhibits anti-cancer effects. DNMT3L upregulates CDO1 expression by competitively inhibiting DNMT3A-mediated methylation of CDO1 promoter. CONCLUSIONS Our study revealed the role and epi-transcriptomic regulatory mechanism of DNMT3L in HCC, and underscored the essential role and applicability of big data analysis in elucidating complex biological processes.
Collapse
Affiliation(s)
- Xiaokai Yan
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Yao Qi
- Shanghai Molecular Medicine Engineering Technology Research Center, Shanghai, 201203, China
- Shanghai National Engineering Research Center of Biochip, Shanghai, 201203, China
| | - Xinyue Yao
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nanjing Zhou
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinxin Ye
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
8
|
Cumsille A, Serna-Cardona N, González V, Claverías F, Undabarrena A, Molina V, Salvà-Serra F, Moore ERB, Cámara B. Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution. BMC Genomics 2023; 24:622. [PMID: 37858045 PMCID: PMC10588199 DOI: 10.1186/s12864-023-09694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
Collapse
Affiliation(s)
- Andrés Cumsille
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Néstor Serna-Cardona
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina González
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda Claverías
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Vania Molina
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Cámara
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
9
|
Romanowski SB, Lee S, Kunakom S, Paulo BS, Recchia MJJ, Liu DY, Cavanagh H, Linington RG, Eustáquio AS. Identification of the lipodepsipeptide selethramide encoded in a giant nonribosomal peptide synthetase from a Burkholderia bacterium. Proc Natl Acad Sci U S A 2023; 120:e2304668120. [PMID: 37812712 PMCID: PMC10589681 DOI: 10.1073/pnas.2304668120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.
Collapse
Affiliation(s)
- Sean B. Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Bruno S. Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | | | - Dennis Y. Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
10
|
Li L. Accessing hidden microbial biosynthetic potential from underexplored sources for novel drug discovery. Biotechnol Adv 2023:108176. [PMID: 37211187 DOI: 10.1016/j.biotechadv.2023.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Microbial natural products and their structural analogues have widely used as pharmaceutical agents, especially for infectious diseases and cancer. Despite this success, new structural classes with innovative chemistry and modes of action are urgently needed to be developed to combat the growing antimicrobial resistance and other public health problems. The advances in next-generation sequencing technologies and powerful computational tools open up new opportunities to explore microbial biosynthetic potential from underexplored sources, with millions of secondary metabolites awaiting discovery. The review highlights challenges associated with discovery of new chemical entities, rich reservoirs provided by untapped taxa, ecological niches or host microbiomes, emerging synthetic biotechnologies to unearth the hidden microbial biosynthetic potential for novel drug discovery at scale and speed.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
11
|
Barona-Gómez F, Chevrette MG, Hoskisson PA. On the evolution of natural product biosynthesis. Adv Microb Physiol 2023; 83:309-349. [PMID: 37507161 DOI: 10.1016/bs.ampbs.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Natural products are the raw material for drug discovery programmes. Bioactive natural products are used extensively in medicine and agriculture and have found utility as antibiotics, immunosuppressives, anti-cancer drugs and anthelminthics. Remarkably, the natural role and what mechanisms drive evolution of these molecules is relatively poorly understood. The exponential increase in genome and chemical data in recent years, coupled with technical advances in bioinformatics and genetics have enabled progress to be made in understanding the evolution of biosynthetic gene clusters and the products of their enzymatic machinery. Here we discuss the diversity of natural products, incorporating the mechanisms that govern evolution of metabolic pathways and how this can be applied to biosynthetic gene clusters. We build on the nomenclature of natural products in terms of primary, integrated, secondary and specialised metabolism and place this within an ecology-evolutionary-developmental biology framework. This eco-evo-devo framework we believe will help to clarify the nature and use of the term specialised metabolites in the future.
Collapse
Affiliation(s)
| | - Marc G Chevrette
- Department of Microbiology and Cell Sciences, University of Florida, Museum Drive, Gainesville, FL, United States; University of Florida Genetics Institute, University of Florida, Mowry Road, Gainesville, FL, United States
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
| |
Collapse
|
12
|
Chase AB, Bogdanov A, Demko AM, Jensen PR. Biogeographic patterns of biosynthetic potential and specialized metabolites in marine sediments. THE ISME JOURNAL 2023:10.1038/s41396-023-01410-3. [PMID: 37061583 DOI: 10.1038/s41396-023-01410-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
While the field of microbial biogeography has largely focused on the contributions of abiotic factors to community patterns, the potential influence of biotic interactions in structuring microbial communities, such as those mediated by the production of specialized metabolites, remains largely unknown. Here, we examined the relationship between microbial community structure and specialized metabolism at local spatial scales in marine sediment samples collected from the Long-Term Ecological Research (LTER) site in Moorea, French Polynesia. By employing a multi-omic approach to characterize the taxonomic, functional, and specialized metabolite composition within sediment communities, we find that biogeographic patterns were driven by local scale processes (e.g., biotic interactions) and largely independent of dispersal limitation. Specifically, we observed high variation in biosynthetic potential (based on Bray-Curtis dissimilarity) between samples, even within 1 m2 plots, that reflected uncharacterized chemical space associated with site-specific metabolomes. Ultimately, connecting biosynthetic potential to community metabolomes facilitated the in situ detection of natural products and revealed new insights into the complex metabolic dynamics associated with sediment microbial communities. Our study demonstrates the potential to integrate biosynthetic genes and metabolite production into assessments of microbial community dynamics.
Collapse
Affiliation(s)
- Alexander B Chase
- Department of Earth Sciences, Southern Methodist University, Dallas, TX, USA.
| | - Alexander Bogdanov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Atta H, Alzahaby N, Hamdy NM, Emam SH, Sonousi A, Ziko L. New trends in synthetic drugs and natural products targeting 20S proteasomes in cancers. Bioorg Chem 2023; 133:106427. [PMID: 36841046 DOI: 10.1016/j.bioorg.2023.106427] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/15/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theβ5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.
Collapse
Affiliation(s)
- Hind Atta
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt
| | - Nouran Alzahaby
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia 11566, Cairo, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Sonousi
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, Egypt; Biology Department, School of Sciences and Engineering, American University in Cairo, Egypt.
| |
Collapse
|
14
|
Liu J, Li SM. Genomics-Guided Efficient Identification of 2,5-Diketopiperazine Derivatives from Actinobacteria. Chembiochem 2023; 24:e202200502. [PMID: 36098493 PMCID: PMC10092475 DOI: 10.1002/cbic.202200502] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/12/2022] [Indexed: 02/04/2023]
Abstract
Secondary metabolites derived from microorganism constitute an important part of natural products. Mining of the microbial genomes revealed a large number of uncharacterized biosynthetic gene clusters, indicating their greater potential to synthetize specialized or secondary metabolites (SMs) than identified by classic fermentation and isolation approaches. Various bioinformatics tools have been developed to analyze and identify such gene clusters, thus accelerating significantly the mining process. Heterologous expression of an individual biosynthetic gene cluster has been proven as an efficient way to activate the genes and identify the encoded metabolites that cannot be detected under normal laboratory cultivation conditions. Herein, we describe a concept of genomics-guided approach by performing genome mining and heterologous expression to uncover novel CDPS-derived DKPs and functionally characterize novel tailoring enzymes embedded in the biosynthetic pathways. Recent works focused on the identification of the nucleobase-related and dimeric DKPs are also presented.
Collapse
Affiliation(s)
- Jing Liu
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.,Current address: Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| |
Collapse
|
15
|
Sánchez-Suárez J, Díaz L, Coy-Barrera E, Villamil L. Specialized Metabolism of Gordonia Genus: An Integrated Survey on Chemodiversity Combined with a Comparative Genomics-Based Analysis. BIOTECH 2022; 11:53. [PMID: 36412754 PMCID: PMC9680422 DOI: 10.3390/biotech11040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Members of the phylum Actinomycetota (formerly Actinobacteria) have historically been the most prolific providers of small bioactive molecules. Although the genus Streptomyces is the best-known member for this issue, other genera, such as Gordonia, have shown interesting potential in their specialized metabolism. Thus, we combined herein the result of a comprehensive literature survey on metabolites derived from Gordonia strains with a comparative genomic analysis to examine the potential of the specialized metabolism of the genus Gordonia. Thirty Gordonia-derived compounds of different classes were gathered (i.e., alkaloids, amides, phenylpropanoids, and terpenoids), exhibiting antimicrobial and cytotoxic activities, and several were also isolated from Streptomyces (e.g., actinomycin, nocardamin, diolmycin A1). With the genome data, we estimated an open pan-genome of 57,901 genes, most of them being part of the cloud genome. Regarding the BGCs content, 531 clusters were found, including Terpenes, RiPP-like, and NRPS clusters as the most frequent clusters. Our findings demonstrated that Gordonia is a poorly studied genus in terms of its specialized metabolism production and potential applications. Nevertheless, given their BGCs content, Gordonia spp. are a valuable biological resource that could expand the chemical spectrum of the phylum Actinomycetota, involving novel BGCs for inspiring innovative outlines for synthetic biology and further use in biotechnological initiatives. Therefore, further studies and more efforts should be made to explore different environments and evaluate other bioactivities.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Luis Díaz
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| | - Luisa Villamil
- Doctoral Program in Biosciences, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia
| |
Collapse
|
16
|
Microbiome composition modulates secondary metabolism in a multispecies bacterial community. Proc Natl Acad Sci U S A 2022; 119:e2212930119. [PMID: 36215464 PMCID: PMC9586298 DOI: 10.1073/pnas.2212930119] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial secondary metabolites are a major source of antibiotics and other bioactive compounds. In microbial communities, these molecules can mediate interspecies interactions and responses to environmental change. Despite the importance of secondary metabolites in human health and microbial ecology, little is known about their roles and regulation in the context of multispecies communities. In a simplified model of the rhizosphere composed of Bacillus cereus, Flavobacterium johnsoniae, and Pseudomonas koreensis, we show that the dynamics of secondary metabolism depend on community species composition and interspecies interactions. Comparative metatranscriptomics and metametabolomics reveal that the abundance of transcripts of biosynthetic gene clusters (BGCs) and metabolomic molecular features differ between monocultures or dual cultures and a tripartite community. In both two- and three-member cocultures, P. koreensis modified expression of BGCs for zwittermicin, petrobactin, and other secondary metabolites in B. cereus and F. johnsoniae, whereas the BGC transcriptional response to the community in P. koreensis itself was minimal. Pairwise and tripartite cocultures with P. koreensis displayed unique molecular features that appear to be derivatives of lokisin, suggesting metabolic handoffs between species. Deleting the BGC for koreenceine, another P. koreensis metabolite, altered transcript and metabolite profiles across the community, including substantial up-regulation of the petrobactin and bacillibactin BGCs in B. cereus, suggesting that koreenceine represses siderophore production. Results from this model community show that bacterial BGC expression and chemical output depend on the identity and biosynthetic capacity of coculture partners, suggesting community composition and microbiome interactions may shape the regulation of secondary metabolism in nature.
Collapse
|
17
|
Avalon NE, Murray AE, Baker BJ. Integrated Metabolomic-Genomic Workflows Accelerate Microbial Natural Product Discovery. Anal Chem 2022; 94:11959-11966. [PMID: 35994737 PMCID: PMC9453739 DOI: 10.1021/acs.analchem.2c02245] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pairing of analytical chemistry with genomic techniques represents a new wave in natural product chemistry. With an increase in the availability of sequencing and assembly of microbial genomes, interrogation into the biosynthetic capability of producers with valuable secondary metabolites is possible. However, without the development of robust, accessible, and medium to high throughput tools, the bottleneck in pairing metabolic potential and compound isolation will continue. Several innovative approaches have proven useful in the nascent stages of microbial genome-informed drug discovery. Here, we consider a number of these approaches which have led to prioritization of strain targets and have mitigated rediscovery rates. Likewise, we discuss integration of principles of comparative evolutionary studies and retrobiosynthetic predictions to better understand biosynthetic mechanistic details and link genome sequence to structure. Lastly, we discuss advances in engineering, chemistry, and molecular networking and other computational approaches that are accelerating progress in the field of omic-informed natural product drug discovery. Together, these strategies enhance the synergy between cutting edge omics, chemical characterization, and computational technologies that pitch the discovery of natural products with pharmaceutical and other potential applications to the crest of the wave where progress is ripe for rapid advances.
Collapse
Affiliation(s)
- Nicole E Avalon
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Alison E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada 89512, United States
| | - Bill J Baker
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
18
|
Malit JJL, Leung HYC, Qian PY. Targeted Large-Scale Genome Mining and Candidate Prioritization for Natural Product Discovery. Mar Drugs 2022; 20:398. [PMID: 35736201 PMCID: PMC9231227 DOI: 10.3390/md20060398] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Large-scale genome-mining analyses have identified an enormous number of cryptic biosynthetic gene clusters (BGCs) as a great source of novel bioactive natural products. Given the sheer number of natural product (NP) candidates, effective strategies and computational methods are keys to choosing appropriate BGCs for further NP characterization and production. This review discusses genomics-based approaches for prioritizing candidate BGCs extracted from large-scale genomic data, by highlighting studies that have successfully produced compounds with high chemical novelty, novel biosynthesis pathway, and potent bioactivities. We group these studies based on their BGC-prioritization logics: detecting presence of resistance genes, use of phylogenomics analysis as a guide, and targeting for specific chemical structures. We also briefly comment on the different bioinformatics tools used in the field and examine practical considerations when employing a large-scale genome mining study.
Collapse
Affiliation(s)
- Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hiu Yu Cherie Leung
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; (J.J.L.M.); (H.Y.C.L.)
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
19
|
Ziko L, AbdelRaheem O, Nabil M, Aziz RK, Siam R. Bioprospecting the microbiome of Red Sea Atlantis II brine pool for peptidases and biosynthetic genes with promising antibacterial activity. Microb Cell Fact 2022; 21:109. [PMID: 35655185 PMCID: PMC9161539 DOI: 10.1186/s12934-022-01835-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background The search for novel antimicrobial agents is crucial as antibiotic-resistant pathogens continue to emerge, rendering the available antibiotics no longer effective. Likewise, new anti-cancer drugs are needed to combat the emergence of multi-drug resistant tumors. Marine environments are wealthy sources for natural products. Additionally, extreme marine environments are interesting niches to search for bioactive natural compounds. In the current study, a fosmid library of metagenomic DNA isolated from Atlantis II Deep Lower Convective Layer (ATII LCL), was functionally screened for antibacterial activity as well as anticancer effects. Results Two clones exhibited antibacterial effects against the marine Bacillus Cc6 strain, namely clones 102-5A and 88-1G and they were further tested against eleven other challenging strains, including six safe relatives of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), a safe relative to Mycobacterium tuberculosis and four resistant clinical isolates. Clone 88-1G resulted in clear zones of inhibition against eight bacterial strains, while clone 102-5A resulted in zones of inhibition against five bacterial strains. The whole cell lysates of clone 88-1G showed 15% inhibition of Mtb ClpP protease -Mycobacterium tuberculosis drug target-, while whole cell lysates of clone 102-5A showed 19% inhibition of Mtb ClpP protease. Whole cell lysates from the selected clones exhibited anticancer effects against MCF-7 breast cancer cells (cell viability at 50% v/v was 46.2% ± 9.9 for 88-1G clone and 38% ± 7 for 102-5A clone), U2OS osteosarcoma cells (cell viability at 50% v/v was 64.6% ± 12.3 for 88-1G clone and 28.3% ± 1.7 for 102-5A clone) and 1BR hTERT human fibroblast cells (cell viability at 50% v/v was 74.4% ± 5.6 for 88-1G clone and 57.6% ± 8.9 for 102-5A clone). Sequencing of 102-5A and 88-1G clones, and further annotation detected putative proteases and putative biosynthetic genes in clones 102-5A and 88-1G, respectively. Conclusions The ATII LCL metagenome hosts putative peptidases and biosynthetic genes that confer antibiotic and anti-cancer effects. The tested clones exhibited promising antibacterial activities against safe relative strains to ESKAPE pathogens and Mycobacterium tuberculosis. Thus, searching the microbial dark matter of extreme environments is a promising approach to identify new molecules with pharmaceutical potential use. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01835-z.
Collapse
Affiliation(s)
- Laila Ziko
- School of Life and Medical Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, 11865, New Administrative Capital, Egypt.,Department of Biology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Omnia AbdelRaheem
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Marina Nabil
- Graduate Program of Biotechnology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.,Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt 57357, 11617, Cairo, Egypt
| | - Rania Siam
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, 11835, New Cairo, Egypt. .,University of Medicine and Health Sciences, Basseterre, West Indies, Saint Kitts and Nevis.
| |
Collapse
|
20
|
Gavriilidou A, Kautsar SA, Zaburannyi N, Krug D, Müller R, Medema MH, Ziemert N. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat Microbiol 2022; 7:726-735. [PMID: 35505244 DOI: 10.1038/s41564-022-01110-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/24/2022] [Indexed: 12/27/2022]
Abstract
Bacterial specialized metabolites are a proven source of antibiotics and cancer therapies, but whether we have sampled all the secondary metabolite chemical diversity of cultivated bacteria is not known. We analysed ~170,000 bacterial genomes and ~47,000 metagenome assembled genomes (MAGs) using a modified BiG-SLiCE and the new clust-o-matic algorithm. We estimate that only 3% of the natural products potentially encoded in bacterial genomes have been experimentally characterized. We show that the variation in secondary metabolite biosynthetic diversity drops significantly at the genus level, identifying it as an appropriate taxonomic rank for comparison. Equal comparison of genera based on relative evolutionary distance revealed that Streptomyces bacteria encode the largest biosynthetic diversity by far, with Amycolatopsis, Kutzneria and Micromonospora also encoding substantial diversity. Finally, we find that several less-well-studied taxa, such as Weeksellaceae (Bacteroidota), Myxococcaceae (Myxococcota), Pleurocapsa and Nostocaceae (Cyanobacteria), have potential to produce highly diverse sets of secondary metabolites that warrant further investigation.
Collapse
Affiliation(s)
- Athina Gavriilidou
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Satria A Kautsar
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.,Chemistry Department, Scripps Research Florida, Jupiter, FL, USA
| | - Nestor Zaburannyi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Daniel Krug
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.,German Center for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, the Netherlands.
| | - Nadine Ziemert
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Germany. .,Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partnersite Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Watanabe K, Sato M, Osada H. Recent advances in the chemo-biological characterization of decalin natural products and unraveling of the workings of Diels-Alderases. Fungal Biol Biotechnol 2022; 9:9. [PMID: 35488322 PMCID: PMC9055775 DOI: 10.1186/s40694-022-00139-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022] Open
Abstract
The Diels-Alder (DA) reaction refers to a [4 + 2] cycloaddition reaction that falls under the category of pericyclic reactions. It is a reaction that allows regio- and stereo-selective construction of two carbon-carbon bonds simultaneously in a concerted manner to generate a six-membered ring structure through a six-electron cyclic transition state. The DA reaction is one of the most widely applied reactions in organic synthesis, yet its role in biological systems has been debated intensely over the last four decades. A survey of secondary metabolites produced by microorganisms suggests strongly that many of the compounds possess features that are likely formed through DA reactions, and most of them are considered to be catalyzed by enzymes that are commonly referred to as Diels-Alderases (DAases). In recent years, especially over the past 10 years or so, we have seen an accumulation of a substantial body of work that substantiates the argument that DAases indeed exist and play a critical role in the biosynthesis of complex metabolites. This review will cover the DAases involved in the biosynthesis of decalin moieties, which are found in many of the medicinally important natural products, especially those produced by fungi. In particular, we will focus on a subset of secondary metabolites referred to as pyrrolidine-2-one-bearing decalin compounds and discuss the decalin ring stereochemistry and the biological activities of those compounds. We will also look into the genes and enzymes that drive the biosynthetic construction of those complex natural products, and highlight the recent progress made on the structural and mechanistic understanding of DAases, especially regarding how those enzymes exert stereochemical control over the [4 + 2] cycloaddition reactions they catalyze.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Hiroyuki Osada
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako-shi, 351-0198, Japan.
| |
Collapse
|
22
|
Chevrette MG, Himes BW, Carlos-Shanley C. Nutrient Availability Shifts the Biosynthetic Potential of Soil-Derived Microbial Communities. Curr Microbiol 2022; 79:64. [PMID: 35020062 DOI: 10.1007/s00284-021-02746-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022]
Abstract
Secondary metabolites produced by microorganisms are the main source of antimicrobials and other pharmaceutical drugs. Soil microbes have been the primary discovery source for these secondary metabolites, often producing complex organic compounds with specific biological activities. Research suggests that secondary metabolism broadly shapes microbial ecological interactions, but little is known about the factors that shape the abundance, distribution, and diversity of biosynthetic gene clusters in the context of microbial communities. In this study, we investigate the role of nutrient availability on the abundance of biosynthetic gene clusters in soil-derived microbial consortia. Soil microbial consortia enriched in high sugar medium (150 mg/L of glucose and 200 mg/L of trehalose) had more biosynthetic gene clusters and higher inhibitory activity than those enriched in low sugar medium (15 mg/L of glucose + 20 mg/L of trehalose). Our results demonstrate that experimental microbial communities are a promising tool to study the ecology of specialized metabolites.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery and Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Bradley W Himes
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Camila Carlos-Shanley
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| |
Collapse
|
23
|
Wu L, Zhang Q, Deng Z, Yu Y. From solo to duet, intersections of natural product assembly with self-resistance. Nat Prod Rep 2022; 39:919-925. [PMID: 34989738 DOI: 10.1039/d1np00064k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Covering: up to 2021Self-resistance mechanisms adopted by natural product producers have long been recognized and studied as a standalone system separated from the assembly machinery. However, as more examples of self-resistance have been characterized in detail, it has been revealed that self-resistance could associate with the assembly machinery to fulfill the task of biosynthesis. This review summarizes different self-resistance mechanisms showing a common feature: intersection with natural product assembly. Furthermore, their possible evolutionary origin and synthetic biology applications are discussed.
Collapse
Affiliation(s)
- Linrui Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Qian Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
24
|
Vertical Inheritance Facilitates Interspecies Diversification in Biosynthetic Gene Clusters and Specialized Metabolites. mBio 2021; 12:e0270021. [PMID: 34809466 PMCID: PMC8609351 DOI: 10.1128/mbio.02700-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While specialized metabolites are thought to mediate ecological interactions, the evolutionary processes driving chemical diversification, particularly among closely related lineages, remain poorly understood. Here, we examine the evolutionary dynamics governing the distribution of natural product biosynthetic gene clusters (BGCs) among 118 strains representing all nine currently named species of the marine actinobacterial genus Salinispora. While much attention has been given to the role of horizontal gene transfer (HGT) in structuring BGC distributions, we find that vertical descent facilitates interspecies BGC diversification over evolutionary timescales. Moreover, we identified a distinct phylogenetic signal among Salinispora species at both the BGC and metabolite level, indicating that specialized metabolism represents a conserved phylogenetic trait. Using a combination of genomic analyses and liquid chromatography–high-resolution tandem mass spectrometry (LC-MS/MS) targeting nine experimentally characterized BGCs and their small molecule products, we identified gene gain/loss events, constrained interspecies recombination, and other evolutionary processes associated with vertical inheritance as major contributors to BGC diversification. These evolutionary dynamics had direct consequences for the compounds produced, as exemplified by species-level differences in salinosporamide production. Together, our results support the concept that specialized metabolites, and their cognate BGCs, can represent phylogenetically conserved functional traits with chemical diversification proceeding in species-specific patterns over evolutionary time frames.
Collapse
|