1
|
Liu F, Li Q, Li Y, Liao H, Sun W, Li J, Chen C, Zhang Y, Zhu H. Aculeanoids A-D, the second 17-nor fusicoccane diterpenoids with immunosuppressive activity from Aspergillus aculeatus. PHYTOCHEMISTRY 2025; 233:114414. [PMID: 39848390 DOI: 10.1016/j.phytochem.2025.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Chemical investigation on the secondary metabolites of Aspergillus aculeatus led to the identification of ten modified fusicoccane-type diterpenoids aculeanoids A-J (1-10). Their structures and absolute configurations were characterized by comprehensive spectroscopic analysis, DP4+ analysis, Mo2(OAc)4-induced ECD, single-crystal X-ray diffractions, and ECD calculations. Compounds 1-4 belong to a rare class of 17-nor fusicoccane diterpenoids, with only one previously reported example. Biologically, compounds 6, 7, and 10 exhibited significant immunosuppressive activities against con A-induced T cell proliferation with IC50 values ranging from 2.44 to 5.26 μM and LPS-induced B cell proliferation with IC50 values ranging from 4.18 to 5.78 μM, which provided more possibilities with the treatment of organ transplantation and various autoimmune diseases.
Collapse
Affiliation(s)
- Fei Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China; Department of Radiation Medicine and Environment Medicine, China Institute for Radiation Protection, Taiyuan, 030006, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yongqi Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hong Liao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jianguo Li
- Department of Radiation Medicine and Environment Medicine, China Institute for Radiation Protection, Taiyuan, 030006, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Xue Q, Zhao X, Ma D. Total Syntheses of Diepoxy- ent-Kaurane Diterpenoids Enabled by a Bridgehead-Enone-Initiated Intramolecular Cycloaddition. J Am Chem Soc 2025; 147:1197-1206. [PMID: 39726142 DOI: 10.1021/jacs.4c15004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Here, we report the enantioselective total syntheses of four diepoxy-ent-kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction. Combined experimental and computational studies demonstrated that the novel bridgehead-enone-initiated intramolecular cycloaddition could proceed in a stepwise diradical mechanism. Although the key step partially led to unexpected [2 + 2]-cycloaddition outcomes, we ultimately implemented an unprecedented TiIII-catalyzed cyclobutane ring-opening-annulation radical cascade to reassemble a keystone pentacyclic core. Coupled with a sequence of organized oxidation-state manipulations and an efficient late-stage assembly of the C-7,20 hemiketal bridge, our strategy would streamline the synthetic design of diepoxy-ent-kaurane diterpenoids and pave the way for their modular syntheses as well as highlight the powerful utility of [3.2.1]-bridgehead enone intermediates in the construction of structural complexity.
Collapse
Affiliation(s)
- Yin Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Qilin Xue
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xiangbo Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Dawei Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
3
|
Martins VDC, da Silva MAE, da Veiga VF, Pereira HMG, de Rezende CM. Ent-Kaurane Diterpenoids from Coffea Genus: An Update of Chemical Diversity and Biological Aspects. Molecules 2024; 30:59. [PMID: 39795116 PMCID: PMC11722336 DOI: 10.3390/molecules30010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/16/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Coffee is one of the most important beverages in the world and is produced from Coffea spp. beans. Diterpenes with ent-kaurane backbones have been described in this genus, and substances such as cafestol and kahweol have been widely investigated, along with their derivatives and biological properties. Other coffee ent-kaurane diterpenoids have been reported with new perspectives on their biological activities. The aim of this review is to update the chemical diversity of ent-kaurane diterpenoids in green and roasted coffee, detailing each new compound and reporting its biological potential. A systematic review was performed using the bibliographic databases (SciFinder, Web of Science, ScienceDirect) and specific keywords such as "coffea diterpenes", "coffee diterpenes", "coffee ent-kaurane diterpenes" and "coffee diterpenoids". Only articles related to the isolation of coffee ent-kaurane compounds were considered. A total of 146 compounds were related to Coffea spp. since the first report in 1932. Different chemical skeletons were observed, and these compounds were grouped as furan-type, oxidation-type, rearrangement-type, lacton-type, and lactam-type, among others. In general, the new coffee diterpenoids showed potential as antidiabetic, antidiapogenic, α-glucosidade inhibition, antiplatelet activity, and Cav.3 inhibitors agents, revealing the possibilities for the design, discovery, and development of new drugs.
Collapse
Affiliation(s)
- Víctor de C. Martins
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
- Brazilian Doping Control Laboratory (LBCD), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Maria Alice E. da Silva
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
| | - Valdir F. da Veiga
- Chemistry Section, Military Institute of Engineering, Rio de Janeiro 22290-270, Brazil;
| | - Henrique M. G. Pereira
- Brazilian Doping Control Laboratory (LBCD), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil;
| | - Claudia M. de Rezende
- Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil; (M.A.E.d.S.); (C.M.d.R.)
| |
Collapse
|
4
|
Feng Y, Wu Y, Yu J, Zhang H, Zheng G, Abudurexiti A, Yao G. Discovery of ent-kaurane diterpenoid glucosides as potent analgesics from the leaves of Pieris formosa. Bioorg Chem 2024; 153:107923. [PMID: 39500216 DOI: 10.1016/j.bioorg.2024.107923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 12/14/2024]
Abstract
To search for structurally novel analgesics from Ericaceae plants, the leaves of Pieris formosa collected at Yichang, Hubei, China, were phytochemically investigated for the first time. A total of fifteen ent-kaurane diterpene glucosides (1-15) including twelve new ones, named forminosides A-L (1-12), were isolated. Their structures were elucidated by comprehensive spectroscopic data analyses, quantum chemical calculations (13C NMR and ECD calculations and DP4+ analysis), and chemical methods. The absolute configures of 1-3, 5-8, 11, and 13 were further determined by single-crystal X-ray diffraction analysis. Forminoside A (1) represents the first 3α-(β-d-glucopyranosyloxy)-11,16-epoxy-ent-kaurane diterpenoid bearing a unique 12-oxa-pentacyclo[9.3.3.01,10.04,9.013,16]heptadecane core. Forminoside J (10) is the first 17-nor-ent-kaurane type diterpenoid from Ericaceae family, while forminoside L (12) represents the first example of 4,5-seco-ent-kaurane diterpenoid glycoside bearing an unusual α-hydroxyl-α,β-unsaturated ketone block. Notably, the structure of mollisside A was revised to 3β-(β-d-glucopyranosyloxy)-16β,17-dihydroxy-ent-kaurane based on the NMR and single-crystal X-ray diffraction data analysis of forminoside C (3). All the isolates 1-15 showed potent analgesic activity in the HOAc-induced writhing test in mice. Among them, compounds 1-3, 5-12, and 15 exhibited significant analgesic effects at a dose of 5.0 mg/kg with the inhibition rates over 50%. Compounds 1, 5, 7, and 9-12 still displayed significant analgesic effects with the inhibition rates exceeding 50% at a lower dose of 1.0 mg/kg. Forminosides J (10) and L (12) still showed significant analgesic potency even at a lower dose of 0.2 mg/kg, comparable to that of the positive control, morphine. This is first report of the analgesic activity of 11,16-epoxy-ent-kaurane diterpenoid. A preliminary structure-activity relationship was explored, providing new clues to design novel analgesics based on the ent-kaurane and related diterpenoids.
Collapse
Affiliation(s)
- Yuanyuan Feng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yan Wu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaxing Yu
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, China
| | - Hanqi Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guijuan Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Adila Abudurexiti
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Laboratory of Xinjiang Native Medicinal and Edible Plant Resource Chemistry, College of Chemistry and Environmental Science, Kashi University, Kashi 844006, China.
| |
Collapse
|
5
|
Li LZ, Huang YR, Xu ZX, He HS, Ran HW, Zhu KY, Han JC, Li CC. Synthesis of Bridged Five-Membered Ring Systems by Type II [3 + 2] Annulation of Allenylsilane-ene. J Am Chem Soc 2024; 146:24782-24787. [PMID: 39207015 DOI: 10.1021/jacs.4c09384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The first type II intramolecular [3 + 2] annulation of allenylsilane-ene has been achieved, enabling diastereoselective and efficient construction of synthetically challenging bridged five-membered ring systems such as bicyclo[3.2.1]. This mild and direct process shows a broad substrate scope and is highly stereospecific. Particularly, this work represents the first stereoselective method for the direct synthesis of bicyclo[3.2.1] ring systems from acyclic precursors. Additionally, the first asymmetric total syntheses of (+)- and (-)-strepsesquitriol, and the efficient formation of the synthetically challenging tetracyclic core of pierisjaponol D are achieved by this type II [3 + 2] annulation reaction.
Collapse
Affiliation(s)
- Ling-Zi Li
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Rou Huang
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zi-Xun Xu
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong-Sen He
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong-Wei Ran
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ke-Yu Zhu
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jing-Chun Han
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
6
|
Li L, Fu J, Liu N. Advances in the Structures, Pharmacological Activities, and Biosynthesis of Plant Diterpenoids. J Microbiol Biotechnol 2024; 34:1563-1579. [PMID: 39081244 PMCID: PMC11380518 DOI: 10.4014/jmb.2402.02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024]
Abstract
More and more diterpenoids have attracted extensive attention due to the diverse chemical structures and excellent biological activities, and have been developed into clinical drugs or consumer products. The vast majority of diterpenoids are derived from plants. With the long-term development of plant medicinal materials, the natural resources of many plant diterpenoids are decreasing, and the biosynthetic mechanism of key active components has increasingly become a research hotspot. Using synthetic biology to engineer microorganisms into "cell factories" to produce the desired compounds is an essential means to solve these problems. In this review, we depict the plant-derived diterpenoids from chemical structure, biological activities, and biosynthetic pathways. We use representative plant diterpenes as examples to expound the research progress on their biosynthesis, and summarize the heterologous production of plant diterpenoids in microorganisms in recent years, hoping to lay the foundation for the development and application of plant diterpenoids in the future.
Collapse
Affiliation(s)
- Leilei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jia Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
7
|
Cao Z, Sun W, Zhang J, Zhuo J, Yang S, Song X, Ma Y, Lu P, Han T, Li C. Total syntheses of (-)-macrocalyxoformins A and B and (-)-ludongnin C. Nat Commun 2024; 15:6052. [PMID: 39025872 PMCID: PMC11258297 DOI: 10.1038/s41467-024-50374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and diverse molecular architectures along with broad biological activities of ent-kauranoids natural products make them an excellent testing ground for the invention of synthetic methods and strategies. Recent efforts notwithstanding, synthetic access to the highly oxidized enmein-type ent-kauranoids still presents considerable challenges to synthetic chemists. Here, we report the enantioselective total syntheses of C-19 oxygenated enmein-type ent-kauranoids, including (-)-macrocalyxoformins A and B and (-)-ludongnin C, along with discussion and study of synthetic strategies. The enabling feature in our synthesis is a devised Ni-catalyzed decarboxylative cyclization/radical-polar crossover/C-acylation cascade that forges a THF ring concomitantly with the β-keto ester group. Mechanistic studies reveal that the C-acylation process in this cascade reaction is achieved through a carboxylation followed by an in situ esterification. Biological evaluation of these synthetic natural products reveals the indispensable role of the ketone on the D ring in their anti-tumor efficacy.
Collapse
Affiliation(s)
- Zichen Cao
- School of Life Sciences, Peking University, 100871, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Wenxuan Sun
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Jingfu Zhang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Junming Zhuo
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Shaoqiang Yang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Xiaocui Song
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Panrui Lu
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Ting Han
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Chao Li
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
8
|
Yue G, Liu B. Recent Developments in the Syntheses of C-20-Oxygenated ent-Kaurane Diterpenoids. Chempluschem 2024; 89:e202300676. [PMID: 38414152 DOI: 10.1002/cplu.202300676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Ent-kaurane diterpenes are a large group of natural products, with more than 1,000 compounds since their discovery. Due to their excellent biological activities and complex polycyclic structures, these compounds have attracted organic synthesis chemists around the world to be devoted to achieve their total synthesis. At present, the isolated C-20-oxygenated ent-kaurane diterpenes are the most abundant of these natural products, reaching more than 350 in number. However, only total syntheses of 3,20-epoxy, 7,20-epoxy and 19,20-lactone ent-kaurane diterpenes have been reported. In this review, we elaborate the synthesis of these three types of C-20 oxygenated ent-kaurane natural products, discuss these synthetic strategies in detail, and provide good guidance and reference for the synthesis of other C-20 oxygenated compounds.
Collapse
Affiliation(s)
- Guizhou Yue
- College of Science, Sichuan Agricultural University, 46 Xinkang Rd., Ya'an, Sichuan, 625014, China
| | - Bo Liu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
9
|
Liang W, Krabill AD, Gallagher KS, Muli C, Qu Z, Trader D, Zhang ZY, Dai M. Natural Product-Inspired Molecules for Covalent Inhibition of SHP2 Tyrosine Phosphatase. Tetrahedron 2024; 156:133918. [PMID: 38618612 PMCID: PMC11008911 DOI: 10.1016/j.tet.2024.133918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Natural products have been playing indispensable roles in the development of lifesaving drug molecules. They are also valuable sources for covalent protein modifiers. However, they often are scarce in nature and have complex chemical structures, which are limiting their further biomedical development. Thus, natural product-inspired small molecules which still contain the essence of the parent natural products but are readily available and amenable for structural modification, are important and desirable in searching for lead compounds for various disease treatment. Inspired by the complex and diverse ent-kaurene diterpenoids with significant biological activities, we have created a synthetically accessible and focused covalent library by incorporating the bicyclo[3.2.1]octane α-methylene ketone, which is considered as the pharmacophore of ent-kaurene diterpenoids, as half of the structure, and replacing the other half with much less complex but more druglike scaffolds. From this library, we have identified and characterized selective covalent inhibitors of protein tyrosine phosphatase SHP2, an important anti-cancer therapeutic target. The success of this study demonstrated the importance of creating and evaluating natural product-inspired library as well as their application in targeting challenging disease targets.
Collapse
Affiliation(s)
- Weida Liang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Katelyn S Gallagher
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Christine Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Zihan Qu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Darci Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Zhong-Yin Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
10
|
Kibet S, Kimani NM, Mwanza SS, Mudalungu CM, Santos CBR, Tanga CM. Unveiling the Potential of Ent-Kaurane Diterpenoids: Multifaceted Natural Products for Drug Discovery. Pharmaceuticals (Basel) 2024; 17:510. [PMID: 38675469 PMCID: PMC11054903 DOI: 10.3390/ph17040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Natural products hold immense potential for drug discovery, yet many remain unexplored in vast libraries and databases. In an attempt to fill this gap and meet the growing demand for effective drugs, this study delves into the promising world of ent-kaurane diterpenoids, a class of natural products with huge therapeutic potential. With a dataset of 570 ent-kaurane diterpenoids obtained from the literature, we conducted an in silico analysis, evaluating their physicochemical, pharmacokinetic, and toxicological properties with a focus on their therapeutic implications. Notably, these natural compounds exhibit drug-like properties, aligning closely with those of FDA-approved drugs, indicating a high potential for drug development. The ranges of the physicochemical parameters were as follows: molecular weights-288.47 to 626.82 g/mol; number of heavy atoms-21 to 44; the number of hydrogen bond donors and acceptors-0 to 8 and 1 to 11, respectively; the number of rotatable bonds-0 to 11; fraction Csp3-0.65 to 1; and TPSA-20.23 to 189.53 Ų. Additionally, the majority of these molecules display favorable safety profiles, with only 0.70%, 1.40%, 0.70%, and 46.49% exhibiting mutagenic, tumorigenic, reproduction-enhancing, and irritant properties, respectively. Importantly, ent-kaurane diterpenoids exhibit promising biopharmaceutical properties. Their average lipophilicity is optimal for drug absorption, while over 99% are water-soluble, facilitating delivery. Further, 96.5% and 28.20% of these molecules exhibited intestinal and brain bioavailability, expanding their therapeutic reach. The predicted pharmacological activities of these compounds encompass a diverse range, including anticancer, immunosuppressant, chemoprotective, anti-hepatic, hepatoprotectant, anti-inflammation, antihyperthyroidism, and anti-hepatitis activities. This multi-targeted profile highlights ent-kaurane diterpenoids as highly promising candidates for further drug discovery endeavors.
Collapse
Affiliation(s)
- Shadrack Kibet
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Njogu M. Kimani
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- Natural Product Chemistry and Computational Drug Discovery Laboratory, Embu P.O. Box 6-60100, Kenya
| | - Syombua S. Mwanza
- Department of Physical Sciences, University of Embu, Embu P.O. Box 6-60100, Kenya; (S.K.); (S.S.M.)
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Cynthia M. Mudalungu
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
- School of Chemistry and Material Science, The Technical University of Kenya, Nairobi P.O. Box 52428-00200, Kenya
| | - Cleydson B. R. Santos
- Graduate Program in Medicinal Chemistry and Molecular Modelling, Health Science Institute, Federal University of Pará, Belém 66075-110, Brazil;
- Laboratory of Modelling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, Brazil
| | - Chrysantus M. Tanga
- International Centre of Insects Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| |
Collapse
|
11
|
Zheng TL, Huo CY, Bao W, Xu XT, Dai WH, Cheng F, Duan DS, Yang LL, Zhang XM, Zhu DY, Wang SH. Au-Catalyzed Asymmetric Polyene Cyclization and Its Application in the Total Synthesis of (+)-2-Ketoferruginol, (+)-Fleuryinol B, (+)-Salviol, and (-)-Erythroxylisin A. Org Lett 2023; 25:7476-7480. [PMID: 37811851 DOI: 10.1021/acs.orglett.3c02417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A catalytic asymmetric 1,3-acyloxy shift/polyene cyclization cascade has been achieved with good enantioselectivities under the catalysis of the chiral Au(I) reagent. The synthetic utility of this method has been showcased by the catalytic asymmetric total syntheses of (+)-2-ketoferruginol, (+)-fleuryinol B, and (+)-salviol. Notably, the first enantioselective total synthesis of (-)-erythroxylisin A has also been realized in 15 steps.
Collapse
Affiliation(s)
- Tian-Lu Zheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Chen-Yu Huo
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Wen Bao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Xue-Tao Xu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020,P. R. China
| | - Wei-Hao Dai
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Fu Cheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Dong-Sen Duan
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Le-Le Yang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Xiao-Ming Zhang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000,P. R. China
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020,P. R. China
| |
Collapse
|
12
|
Ibrahim TS, Khongorzul P, Muyaba M, Alolga RN. Ent-kaurane diterpenoids from the Annonaceae family: a review of research progress and call for further research. Front Pharmacol 2023; 14:1227574. [PMID: 37456746 PMCID: PMC10345206 DOI: 10.3389/fphar.2023.1227574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
The Annonaceae is one of the plant families with members that are credited with numerous pharmacological functions. Among the group of compounds responsible for these bioactivities are the ent-kaurane diterpenoids. The ent-kauranes are a group of 20-Carbon, tetracyclic diterpenoids that are widely distributed in other plant families including the Annonaceae family. This mini-review focuses mainly on the ent-kaurane diterpenoids isolated from the Annonaceae family, delineates the various biological activities of these compounds, and highlights the research gaps that exist for further scientific scrutiny.
Collapse
Affiliation(s)
- Traore S. Ibrahim
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Purevdulam Khongorzul
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Moses Muyaba
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Eden University, Lusaka, Zambia
| | - Raphael N. Alolga
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
13
|
Suzuki T, Ikeda W, Kanno A, Ikeuchi K, Tanino K. Diastereoselective Synthesis of trans-anti-Hydrophenanthrenes via Ti-mediated Radical Cyclization and Total Synthesis of Kamebanin. Chemistry 2023; 29:e202203511. [PMID: 36529687 DOI: 10.1002/chem.202203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Ent-kaurenes consist of an ABC-ring based on a trans-anti-hydrophenanthrene skeleton and a D ring with an exomethylene. Highly oxygen-functionalized ent-kauren-15-ones have promising antiinflammatory pharmacological activity. In this study, we developed a novel diastereoselective synthesis of trans-anti-hydrophenanthrenes via a Ti-mediated reductive radical cyclization. We also demonstrated the applicability of this method by developing the first total synthesis of (±)-kamebanin (longest linear sequence; 17 steps, overall yield; 6.5 %). Furthermore, this synthesis provided a formal semi-pinacol rearrangement for the construction of the quaternary carbon at C8 and a novel Thorpe-Ziegler-type reaction for the construction of the D-ring.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Wataru Ikeda
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Ayaka Kanno
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Kazutada Ikeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| | - Keiji Tanino
- Department of Chemistry, Faculty of Science, Hokkaido University, 060-0810, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Abstract
Gibberellins (GAs) are important plant hormones, but some of their family members are in extremely limited natural supply including GA18. Herein, we report a concise synthesis of (-)-GA18 methyl ester, a member of the C20 gibberellins, from commercially available and cheap andrographolide. Our synthesis features an intramolecular ene reaction to form the C ring, an oxidative cleavage followed by aldol condensation to realize a ring contraction and form the challenging trans-hydrindane (AB ring), and a photochemical [2+2] cycloaddition accompanied by a subsequent SmI2-mediated skeletal rearrangement to construct the methylenebicyclo[3.2.1]octanol moiety (CD ring).
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Weida Liang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Mario E. Rivera
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Ye-Cheng Wang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
15
|
Zhao XH, Meng LL, Liu XT, Shu PF, Yuan C, An XT, Jia TX, Yang QQ, Zhen X, Fan CA. Asymmetric Divergent Synthesis of ent-Kaurane-, ent-Atisane-, ent-Beyerane-, ent-Trachylobane-, and ent-Gibberellane-type Diterpenoids. J Am Chem Soc 2023; 145:311-321. [PMID: 36538760 DOI: 10.1021/jacs.2c09985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A unified strategy toward asymmetric divergent syntheses of nine C8-ethano-bridged diterpenoids A1-A9 (candol A, powerol, sicanadiol, epi-candol A, atisirene, ent-atisan-16α-ol, 4-decarboxy-4-methyl-GA12, trachinol, and ent-beyerane) has been developed based on late-stage transformations of common synthons having ent-kaurane and ent-trachylobane cores. The expeditious assembly of crucial advanced ent-kaurane- and ent-trachylobane-type building blocks is strategically explored through a regioselective and diastereoselective Fe-mediated hydrogen atom transfer (HAT) 6-exo-trig cyclization of the alkene/enone and 3-exo-trig cyclization of the alkene/ketone, showing the multi-reactivity of densely functionalized polycyclic substrates with πC═C and πC═O systems in HAT-initiated reactions. Following the rapid construction of five major structural skeletons (ent-kaurane-, ent-atisane-, ent-beyerane-, ent-trachylobane-, and ent-gibberellane-type), nine C8-ethano-bridged diterpenoids A1-A9 could be accessed in the longest linear 8 to 11 steps starting from readily available chiral γ-cyclogeraniol 1 and known chiral γ-substituted cyclohexenone 2, in which enantioselective total syntheses of candol A (A1, 8 steps), powerol (A2, 9 steps), sicanadiol (A3, 10 steps), epi-candol A (A4, 8 steps), ent-atisan-16α-ol (A6, 11 steps), and trachinol (A8, 10 steps) are achieved for the first time.
Collapse
Affiliation(s)
- Xian-He Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Le-Le Meng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Tao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Shu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Cheng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tian-Xi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qi-Qiong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Zhou Z, Xu D, Jiang W, Chen J, Zhen Y, Huo J, Yan J, Gao J, Xie W. Convergent Synthesis of Enantioenriched ortho-Fused Tricyclic Diketones via Catalytic Asymmetric Intramolecular Vinylogous Aldol Condensation. Org Lett 2022; 24:9017-9022. [DOI: 10.1021/acs.orglett.2c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Zhiqiang Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Dongyang Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wei Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiyou Huo
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jiahang Yan
- College of Plant Protection, Northwest A&F University, 22 Xinong Road, Yangling 712100, China
| | - Jinming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
17
|
Sun Y, Chen Z, Wang G, Lv H, Mao Y, Ma K, Wang Y. De novo production of versatile oxidized kaurene diterpenes in Escherichia coli. Metab Eng 2022; 73:201-213. [DOI: 10.1016/j.ymben.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
18
|
Shah M, Mubin S, Hassan SSU, Tagde P, Ullah O, Rahman MH, Al-Harrasi A, Rehman NU, Murad W. Phytochemical Profiling and Bio-Potentiality of Genus Scutellaria: Biomedical Approach. Biomolecules 2022; 12:biom12070936. [PMID: 35883492 PMCID: PMC9313281 DOI: 10.3390/biom12070936] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Scutellaria (Lamiaceae) comprises over 360 species. Based on its morphological structure of calyx, also known as Skullcap, it is herbaceous by habit and cosmopolitan by habitat. The species of Scutellaria are widely used in local communities as a natural remedy. The genus contributed over three hundred bioactive compounds mainly represented by flavonoids and phenols, chemical ingredients which serve as potential candidates for the therapy of various biological activities. Thus, the current review is an attempt to highlight the biological significance and its correlation to various isolated bioactive ingredients including flavonoids, terpenoids, phenols, alkaloids, and steroids. However, flavonoids were the dominant group observed. The findings of the Scutellaria reveal that due to its affluent basis of numerous chemical ingredients it has a diverse range of pharmacological potentials, such as antimicrobial, antioxidant, antifeedant, enzyme inhibition, anti-inflammatory, and analgesic significance. Currently, various bioactive ingredients have been investigated for various biological activities from the genus Scutellaria in vitro and in vivo. Furthermore, these data help us to highlight its biomedical application and to isolate the responsible compounds to produce innovative medications as an alternative to synthetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Sidra Mubin
- Department of Botany, Hazara University Mansehra, Mansehra 21310, Pakistan;
| | - Syed Shams ul Hassan
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Obaid Ullah
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: (A.A.-H.); (N.U.R.); (W.M.)
| |
Collapse
|
19
|
Li LP, Han JQ, Yang F, Wu X, Xie JH, Zhou QL. Total Synthesis of the Alleged Structure of (+)-Fimbricalyxoid A. Org Lett 2022; 24:3477-3481. [PMID: 35522037 DOI: 10.1021/acs.orglett.2c01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An enantioselective total synthesis of the alleged structure of (+)-fimbricalyxoid A is reported. The synthetic strategy features a pyridine-N-oxidate-mediated SN2' reaction to introduce an oxygen functionality at position C3 of the A-ring and a sequential three-step process via the cleavage of the C-O bonds and hemiketalization to form the 3,20-oxybridge. With this strategy, the target molecule was synthesized in 19% overall yield and 12 steps from our previously synthesized cis-fused octahydrophenanthrene (+)-6.
Collapse
Affiliation(s)
- Lin-Ping Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Qi Han
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300070, China
| |
Collapse
|
20
|
Solans MM, Basistyi VS, Law JA, Bartfield NM, Frederich JH. Programmed Polyene Cyclization Enabled by Chromophore Disruption. J Am Chem Soc 2022; 144:6193-6199. [PMID: 35377634 PMCID: PMC10559755 DOI: 10.1021/jacs.2c02144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new polyene cyclization strategy exploiting β-ionyl derivatives was developed. Photoinduced deconjugation of the extended π-system within these chromophores unveils a contrathermodynamic polyene that engages in a Heck bicyclization to afford [4.4.1]-propellanes. This cascade improves upon the limited regioselectivity achieved using existing biomimetic tactics and tolerates both electron-rich and electron-deficient (hetero)aryl groups. The utility of this approach was demonstrated with the diverted total synthesis of taxodione and salviasperanol, two isomeric abietane diterpenes that were previously inaccessible along the same synthetic pathway.
Collapse
Affiliation(s)
- Megan M Solans
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vitalii S Basistyi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James A Law
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Noah M Bartfield
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - James H Frederich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
21
|
Wang SJ, Yu M, Li H, Zhang GJ. Structures and Biological Activities of Polyacylated ent-Kaurane Diterpenoid Glycosides from the Aerial Parts of Inula hupehensis. JOURNAL OF NATURAL PRODUCTS 2022; 85:185-195. [PMID: 34964626 DOI: 10.1021/acs.jnatprod.1c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sixteen new (1-16) and three known (17-19) polyacylated ent-kaurane diterpenoid glycosides were isolated from the aerial parts of Inula hupehensis. The planar structures of 1-16 and their relative configurations were established on the basis of extensive spectroscopic analysis. The absolute configurations of all stereogenic centers for compounds 1 and 6 were determined by single-crystal X-ray diffraction experiments, and the absolute configurations of the other new compounds were assigned by chemical degradation and experimental ECD data. Antineuroinflammatory testing of all the isolates showed that compound 5 inhibited lipopolysaccharide-induced nitric oxide production in BV-2 microglial cells with an IC50 value of 15.6 μM. In an α-glucosidase inhibitory assay, compound 13 exhibited a strong inhibitory effect with an IC50 value of 32.8 μM, whereas the IC50 value of the positive control, acarbose, was 387.8 μM.
Collapse
Affiliation(s)
- Su-Juan Wang
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Min Yu
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Hua Li
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
| | - Gui-Jie Zhang
- College of Pharmacy, Guilin Medical University, Guilin 541004, People's Republic of China
| |
Collapse
|
22
|
Ma W, Zhu L, Zhang M, Lee C. Asymmetric Synthesis of AB Rings in ent-Kaurene Carbon Framework. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhuo J, Zhu C, Wu J, Li Z, Li C. Reductive Radical Annulation Strategy toward Bicyclo[3.2.1]octanes: Synthesis of ent-Kaurane and Beyerane Diterpenoids. J Am Chem Soc 2021; 144:99-105. [PMID: 34958563 DOI: 10.1021/jacs.1c11623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report a general [3 + 2] radical annulation that allows the facile construction of bicyclo[3.2.1]octane motifs in ent-kaurane- and beyerane-type diterpenoids. This radical annulation is difficult to control but was realized by harnessing an unprecedented and counterintuitive effect of TEMPO. Eleven natural products with a wide array of oxidation states are easily prepared, demonstrating the powerful utility of this straightforward synthetic strategy.
Collapse
Affiliation(s)
- Junming Zhuo
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Chunlin Zhu
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China
| | - Jinbao Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zijian Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,National Institute of Biological Sciences, Beijing 102206, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Liu Z, Hu J, Ding H. Electrochemical ODI-[5+2] Cascade for the Syntheses of Diversely Functionalized Bicyclo[3.2.1]octane Frameworks. Org Lett 2021; 23:6745-6749. [PMID: 34402626 DOI: 10.1021/acs.orglett.1c02321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A metal- and hypervalent iodine reagent-free electrochemical oxidative dearomatization-induced [5+2] cycloaddition/pinacol rearrangement cascade reaction was described. The electrosynthetic method showed strong tolerance for vinylphenols, ethynylphenols, and allenylphenols, which thus enabled the rapid assembly of diversely functionalized bicyclo[3.2.1]octanes in 41-95% yields and up to >20:1 dr. This protocol could be scaled up to gram amounts and should find wide application in complex natural product synthesis.
Collapse
Affiliation(s)
- Zhaobo Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jialei Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hanfeng Ding
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|