1
|
Stone AEBS, Fortunato A, Wang X, Saggioro E, Snurr RQ, Hupp JT, Arcudi F, Ðorđević L. Photocatalytic Semi-Hydrogenation of Acetylene to Polymer-Grade Ethylene with Molecular and Metal-Organic Framework Cobaloximes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408658. [PMID: 39439160 DOI: 10.1002/adma.202408658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/30/2024] [Indexed: 10/25/2024]
Abstract
The semi-hydrogenation of acetylene in ethylene-rich gas streams is a high-priority industrial chemical reaction for producing polymer-grade ethylene. Traditional thermocatalytic routes for acetylene reduction to ethylene, despite progress, still require high temperatures and high H2 consumption, possess relatively low selectivity, and use a noble metal catalyst. Light-powered strategies are starting to emerge, given that they have the potential to use directly the abundant and sustainable solar irradiation, but are ineffective. Here an efficient, >99.9% selective, visible-light powered, catalytic conversion of acetylene to ethylene is reported. The catalyst is a homogeneous molecular cobaloxime that operates in tandem with a photosensitizer at room temperature and bypasses the use of non-environmentally friendly and flammable H2 gas feed. The reaction proceeds through a cobalt-hydride intermediate with ≈100% conversion of acetylene under competitive (ethylene co-feed) conditions after only 50 min, and with no evolution of H2 or over-hydrogenation to ethane. The cobaloxime is further incorporated as a linker in a metal-organic framework; the result is a heterogeneous catalyst for the conversion of acetylene under competitive (ethylene co-feed) conditions that can be recycled up to six times and remains catalytically active for 48 h, before significant loss of performance is observed.
Collapse
Affiliation(s)
- Aaron E B S Stone
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208-3113, USA
| | - Anna Fortunato
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Xijun Wang
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208-3120, USA
| | - Edoardo Saggioro
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208-3120, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208-3113, USA
| | - Francesca Arcudi
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| | - Luka Ðorđević
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, Padova, 35131, Italy
| |
Collapse
|
2
|
Hou Y, Ma H, Li J, Li S, Wang JC, Qu LB, Lou T, Cui CX. Visible-Light-Driven Reduction of CO 2 to CO with Highly Active and Selective Earth-Abundant Metal Porphyrin-Conjugated Organic Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16113-16120. [PMID: 39051840 DOI: 10.1021/acs.langmuir.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The field of artificial photosynthesis, which focuses on harnessing solar light for the conversion of CO2 to economically valuable chemical products, remains a captivating area of research. In this study, we developed a series of photocatalysts based on Earth abundant elements (Fe, Co, Ni, Cu, and Zn) incorporated into 2D metalloporphyrin-conjugated organic polymers known as MTBPP-BEPA-COPs. These photocatalysts were utilized for the photoreduction of CO2 employing only H2O as the electron donor, without the need for any sacrificial agents or precious-metal cocatalysts. Remarkably, all of the synthesized MTBPP-BEPA-COPs exhibited an exceptional CO2 photoreduction performance only irradiated by visible light. Particularly, upon optimizing the metal ion coordinated with porphyrin units, ZnTBPP-BEPA-COP outperformed the other MTBPP-BEPA-COPs in terms of photocatalytic activity, achieving an impressive CO reduction yield of 152.18 μmol g-1 after just 4 h of irradiation. The electrostatic potential surfaces calculated by density functional theory suggest the potential involvement of metal centers as binding and catalytic sites for the binding of CO2. The calculated adsorption energy of CO2 with ZnTBPP-BEPA-COP exhibited one of the two smallest values. This may be the reason for the excellent catalytic effect of ZnTBPP-BEPA-COP. Thus, the present study not only demonstrates the potential of porphyrin-based conjugated polymers as highly efficient photocatalysts for CO2 reduction but also offers valuable insights into the rational design of such materials in the future.
Collapse
Affiliation(s)
- Yuxia Hou
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Haizeng Ma
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Jinyu Li
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, PR China
| | - Suhong Li
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ji-Chao Wang
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Tianjun Lou
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| | - Cheng-Xing Cui
- Department of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang 453003, PR China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou 451162, PR China
| |
Collapse
|
3
|
Ghasemzadeh R, Akhbari K, Kawata S. Ag@MUT-16 nanocomposite as a Fenton-like and plasmonic photocatalyst for degradation of Quinoline Yellow under visible light. Dalton Trans 2024; 53:11094-11111. [PMID: 38887080 DOI: 10.1039/d4dt00322e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
A new cobalt-based metal-organic framework with the chemical formula of [Co2(DClTPA)2(DABCO)]·(DMF)4 (MUT-16) containing 1,4-diazabicyclo[2.2.2]octane (DABCO) and 2,5-dichloroterephthalic acid (DClTPA) has been designed and prepared through a solvothermal method. MUT-16 (MUT = Materials from University of Tehran) crystallized in a tetragonal system with I41/acd space group, based on single-crystal X-ray analysis. The Ag@MUT-16 nanocomposite was prepared using Ag nanoparticles (NPs) loaded into/onto porous MUT-16via photoreduction route (PR). The MUT-16 and Ag@MUT-16 were characterized using various techniques, such as PXRD, FT-IR, FE-SEM, TEM, EDX, N2 adsorption-desorption isotherms, TGA, DRS, PL, EIS, and Mott-Schottky measurements. The Ag@MUT-16 nanocomposite showed photocatalytic activity of 87.75% in the degradation of Quinoline Yellow (QY) after 30 min under visible light irradiation. The distinctive characteristics of the Ag@MUT-16 nanocomposite, such as the Fenton-like effect of Co2+ ions, surface plasmon resonance (SPR) of Ag NPs, Schottky junction at interfaces between Ag NPs and MUT-16, and reduction of electron-hole recombination through electron trapping by Ag NPs as co-catalyst, all play significant roles in the photocatalytic degradation of Quinoline Yellow (QY).
Collapse
Affiliation(s)
- Roghayyeh Ghasemzadeh
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| | - Satoshi Kawata
- Department of Chemistry, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Jing H, Zhao L, Song G, Li J, Wang Z, Han Y, Wang Z. Application of a Mixed-Ligand Metal-Organic Framework in Photocatalytic CO 2 Reduction, Antibacterial Activity and Dye Adsorption. Molecules 2023; 28:5204. [PMID: 37446866 DOI: 10.3390/molecules28135204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In this paper, a known mixed-ligand MOF {[Co2(TZMB)2(1,4-bib)0.5(H2O)2]·(H2O)2}n (compound 1) was reproduced, and its potential application potential was explored. It was found that compound 1 had high photocatalytic activity for CO2 reduction. After 12 h of illumination, the formation rate of CO, which is the product of CO2 reduction by compound 1, reached 3012.5 μmol/g/h. At the same time, compound 1 has a good antibacterial effect on Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albicans (C. albicans), which has potential research value in the medical field. In addition, compound 1 can effectively remove Congo Red from aqueous solutions and achieve the separation of Congo red from mixed dye solutions.
Collapse
Affiliation(s)
- Hongwei Jing
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lun Zhao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Guanying Song
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Jiayu Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ziyun Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yue Han
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Zhexin Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
5
|
Chen J, Abazari R, Adegoke KA, Maxakato NW, Bello OS, Tahir M, Tasleem S, Sanati S, Kirillov AM, Zhou Y. Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214664] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Gupta RK, Riaz M, Ashafaq M, Gao ZY, Varma RS, Li DC, Cui P, Tung CH, Sun D. Adenine-incorporated metal–organic frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhang Y, Liu H, Gao F, Tan X, Cai Y, Hu B, Huang Q, Fang M, Wang X. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. ENERGYCHEM 2022; 4:100078. [DOI: doi.org/10.1016/j.enchem.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
8
|
Spiegel S, Wagner I, Begum S, Schwotzer M, Wessely I, Bräse S, Tsotsalas M. Dynamic Surface Modification of Metal-Organic Framework Nanoparticles via Alkoxyamine Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6531-6538. [PMID: 35579436 DOI: 10.1021/acs.langmuir.2c00085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
External surface engineering of metal-organic framework nanoparticles (MOF NPs) is emerging as an important design strategy, leading to optimized chemical and colloidal stability. To date, most of the MOF surface modifications have been performed either by physical adsorption or chemical association of small molecules or (preformed) polymers. However, most of the currently employed approaches cannot precisely control the polymer density, and dynamic modifications at the surfaces on demand have been a challenging task. Here, we introduce a general approach based on covalent modification employing alkoxyamines as a versatile tool to modify the outer surface of MOF nanoparticles (NPs). The alkoxyamines serve as initiators to grow polymers from the MOF surface via nitroxide-mediated polymerization (NMP) and allow dynamic attachment of small molecules via a nitroxide exchange reaction (NER). The successful surface modification and successive surface polymerization are confirmed via time-of-flight secondary ion mass spectrometry (ToF-SIMS), size exclusion chromatography (SEC), and nuclear magnetic resonance (NMR) spectroscopy. The functionalized MOF NPs exhibit high suspension stability and good dispersibility while retaining their chemical integrity and crystalline structure. In addition, electron paramagnetic resonance spectroscopy (EPR) studies prove the dynamic exchange of two different nitroxide species via NER and further allow us to quantify the surface modification with high sensitivity. Our results demonstrate that alkoxyamines serve as a versatile tool to dynamically modify the surface of MOF NPs with high precision, allowing us to tailor their properties for a wide range of potential applications, such as drug delivery or mixed matrix membranes.
Collapse
Affiliation(s)
- Simon Spiegel
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ilona Wagner
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Salma Begum
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- 3DMM2O─Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Matthias Schwotzer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Isabelle Wessely
- 3DMM2O─Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- 3DMM2O─Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
9
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
10
|
Wei Y, Chang M, Liu J, Wang N, Wang JX. Spray drying-assisted construction of hierarchically porous ZIF-8 for controlled release of doxorubicin. NANOSCALE 2022; 14:2793-2801. [PMID: 35133372 DOI: 10.1039/d2nr00040g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intrinsic properties and structure of carrier materials, as well as the drug-loading method, are crucial to the fabrication of high-performance controlled drug release systems. Metal-organic frameworks (MOFs) have attracted great attention in drug delivery due to their rich variety and very precisely designable structures, but their inherent small pores limit their application towards large-size drug molecules. Herein, we report a facile and efficient approach for the construction of hierarchically porous ZIF-8 (HP-ZIF-8) by spray drying. The homogeneously distributed mesopores, which result from the interspaces in the closely arranged nanosized ZIF-8 (N-ZIF-8), can be tuned by adjusting the primary particle size. More importantly, a drug (doxorubicin (DOX), for example) can be simultaneously encapsulated during the fabrication process of HP-ZIF-8, achieving a high loading rate of 79% and an encapsulation efficiency of 79%. Furthermore, we demonstrate that the obtained DOX@HP-ZIF-8 is a pH-responsive system and the release can also be controlled by the mesopore size. Although HP-ZIF-8 shows obvious advantages in drug loading and release performance compared with N-ZIF-8 loaded with DOX by the same solvent adsorption approach, DOX@HP-ZIF-8 displays significantly increased loading capacity (more than 3 times) and the slowest release rate due to its drug-loading method. Their therapeutic efficacy on HeLa cells has also been proved. These findings have important implications for the construction of HP-MOFs as drug carriers and will also present a new platform for controlled drug release and biomedical applications.
Collapse
Affiliation(s)
- Yan Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Miao Chang
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingran Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ni Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Insight into the Photocatalytic Activity of Cobalt-Based Metal–Organic Frameworks and Their Composites. Catalysts 2022. [DOI: 10.3390/catal12020110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nowadays, materials with great potential for environmental protection are being sought. Metal–organic frameworks, in particular those with cobalt species as active sites, have drawn considerable interest due to their excellent properties. This review focuses on describing cobalt-based MOFs in the context of light-triggered processes, including dye degradation, water oxidation and splitting, carbon dioxide reduction, in addition to the oxidation of organic compounds. With the use of Co-based MOFs (e.g., ZIF-67, Co-MOF-74) as photocatalysts in these reactions, even over 90% degradation efficiencies of various dyes (e.g., methylene blue) can be achieved. Co-based MOFs also show high TOF/TON values in water splitting processes and CO2-to-CO conversion. Additionally, the majority of alcohols may be converted to aldehydes with efficiencies exceeding 90% and high selectivity. Since Co-based MOFs are effective photocatalysts, they can be applied in the elimination of toxic contaminants that endanger the environment.
Collapse
|
12
|
Lin X, Xie Z, Su B, Zheng M, Dai W, Hou Y, Ding Z, Lin W, Fang Y, Wang S. Well-defined Co 9S 8 cages enable the separation of photoexcited charges to promote visible-light CO 2 reduction. NANOSCALE 2021; 13:18070-18076. [PMID: 34677567 DOI: 10.1039/d1nr04812k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Exploring affordable cocatalysts with high performance for boosting charge separation and CO2 activation is an effective strategy to reinforce CO2 photoreduction efficiency. Herein, well-defined Co9S8 cages are exploited as a nonprecious promoter for visible-light CO2 reduction. The Co9S8 cages are prepared via a multistep strategy with ZIF-67 particles as the precursor and fully characterized by physicochemical techniques. The hollow Co9S8 cocatalyst with a high surface area and profuse catalytically active centers is discovered to accelerate separation and transfer of light-induced charges, and strengthen concentration and activation of CO2 molecules. In a hybrid photosensitized system, these Co9S8 cages efficiently promote the deoxygenative reduction of CO2 to generate CO, with a high yield rate of 35 μmol h-1 (i.e., 35 mmol h-1 g-1). Besides, this cocatalyst is also of high stability for the CO2 photoreduction reaction. Density functional theory (DFT) calculations reveal that the Ru(bpy)32+ photosensitizer is strongly absorbed on the Co9S8 (311) surface through forming four Co-C bonds, which can serve as the "bridges" to ensure quick electron transfer from the excited photosensitiser to the active Co9S8 cocatalyst, thus promoting the separation of photoexcited charges for ehannced CO2 reduction performance.
Collapse
Affiliation(s)
- Xiahui Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Zidong Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Bo Su
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Mei Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Wenxin Dai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, Fuzhou, 350002, China.
| |
Collapse
|