1
|
Narita M, Kohata A, Kageyama T, Watanabe H, Aikawa K, Kawaguchi D, Morihiro K, Okamoto A, Okazoe T. Fluorocarbon-DNA Conjugates for Enhanced Cellular Delivery: Formation of a Densely Packed DNA Nano-Assembly. Chembiochem 2024; 25:e202400436. [PMID: 38858172 DOI: 10.1002/cbic.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
Forming nano-assemblies is essential for delivering DNA conjugates into cells, with the DNA density in the nano-assembly playing an important role in determining the uptake efficiency. In this study, we developed a strategy for the facile synthesis of DNA strands bearing perfluoroalkyl (RF) groups (RF-DNA conjugates) and investigated how they affect cellular uptake. An RF-DNA conjugate bearing a long RF group at the DNA terminus forms a nano-assembly with a high DNA density, which results in greatly enhanced cellular uptake. The uptake mechanism is mediated by clathrin-dependent endocytosis. The use of RF groups to densely assemble negatively charged DNA is a useful strategy for designing drug delivery carriers.
Collapse
Grants
- 22UT0019 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT0211 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 23UT1115 Ministry of Education, Culture, Sports, Science, and Technology (MEXT)
- 20K05460 JSPS KAKENHI Grant-in-Aid for Scientific Research
- 23K13852 Grant-in-Aid for Early-Career Scientists
Collapse
Affiliation(s)
- Minako Narita
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Ai Kohata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Current address: School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Yokohama-shi, Kanagawa, 226-8501, Japan
| | - Taiichi Kageyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Honoka Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kohsuke Aikawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Daisuke Kawaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kunihiko Morihiro
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Yokohama Technical Center, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
2
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
3
|
Kim C, Goudeli E, Ercole F, Ju Y, Gu Y, Xu W, Quinn JF, Caruso F. Particle Engineering via Supramolecular Assembly of Macroscopic Hydrophobic Building Blocks. Angew Chem Int Ed Engl 2024; 63:e202315297. [PMID: 37945544 PMCID: PMC10953382 DOI: 10.1002/anie.202315297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
Tailoring the hydrophobicity of supramolecular assembly building blocks enables the fabrication of well-defined functional materials. However, the selection of building blocks used in the assembly of metal-phenolic networks (MPNs), an emerging supramolecular assembly platform for particle engineering, has been essentially limited to hydrophilic molecules. Herein, we synthesized and applied biscatechol-functionalized hydrophobic polymers (poly(methyl acrylate) (PMA) and poly(butyl acrylate) (PBA)) as building blocks to engineer MPN particle systems (particles and capsules). Our method allowed control over the shell thickness (e.g., between 10 and 21 nm), stiffness (e.g., from 10 to 126 mN m-1 ), and permeability (e.g., 28-72 % capsules were permeable to 500 kDa fluorescein isothiocyanate-dextran) of the MPN capsules by selection of the hydrophobic polymer building blocks (PMA or PBA) and by controlling the polymer concentration in the MPN assembly solution (0.25-2.0 mM) without additional/engineered assembly processes. Molecular dynamics simulations provided insights into the structural states of the hydrophobic building blocks during assembly and mechanism of film formation. Furthermore, the hydrophobic MPNs facilitated the preparation of fluorescent-labeled and bioactive capsules through postfunctionalization and also particle-cell association engineering by controlling the hydrophobicity of the building blocks. Engineering MPN particle systems via building block hydrophobicity is expected to expand their use.
Collapse
Affiliation(s)
- Chan‐Jin Kim
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Eirini Goudeli
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Francesca Ercole
- Drug DeliveryDisposition and Dynamics ThemeMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| | - Yi Ju
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
- School of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Yuang Gu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Wanjun Xu
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - John F. Quinn
- Drug DeliveryDisposition and Dynamics ThemeMonash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
- Department of Chemical EngineeringFaculty of EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
4
|
Kaviani S, Fakih HH, Asohan J, Katolik A, Damha MJ, Sleiman HF. Sequence-Controlled Spherical Nucleic Acids: Gene Silencing, Encapsulation, and Cellular Uptake. Nucleic Acid Ther 2023; 33:265-276. [PMID: 37196168 DOI: 10.1089/nat.2022.0062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023] Open
Abstract
Antisense oligonucleotides (ASOs) can predictably alter RNA processing and control protein expression; however, challenges in the delivery of these therapeutics to specific tissues, poor cellular uptake, and endosomal escape have impeded progress in translating these agents into the clinic. Spherical nucleic acids (SNAs) are nanoparticles with a DNA external shell and a hydrophobic core that arise from the self-assembly of ASO strands conjugated to hydrophobic polymers. SNAs have recently shown significant promise as vehicles for improving the efficacy of ASO cellular uptake and gene silencing. However, to date, no studies have investigated the effect of the hydrophobic polymer sequence on the biological properties of SNAs. In this study, we created a library of ASO conjugates by covalently attaching polymers with linear or branched [dodecanediol phosphate] units and systematically varying polymer sequence and composition. We show that these parameters can significantly impact encapsulation efficiency, gene silencing activity, SNA stability, and cellular uptake, thus outlining optimized polymer architectures for gene silencing.
Collapse
Affiliation(s)
- Sepideh Kaviani
- Department of Chemistry, McGill University, Montreal, Canada
| | - Hassan H Fakih
- Department of Chemistry, McGill University, Montreal, Canada
| | - Jathavan Asohan
- Department of Chemistry, McGill University, Montreal, Canada
| | - Adam Katolik
- Department of Chemistry, McGill University, Montreal, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Canada
| | | |
Collapse
|
5
|
Knieß R, Leeder W, Reißig P, Geyer FK, Göringer HU. Core-Shell DNA-Cholesterol Nanoparticles Exert Lysosomolytic Activity in African Trypanosomes. Chembiochem 2022; 23:e202200410. [PMID: 36040754 PMCID: PMC9826209 DOI: 10.1002/cbic.202200410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Indexed: 01/11/2023]
Abstract
Trypanosoma brucei is the causal infectious agent of African trypanosomiasis in humans and Nagana in livestock. Both diseases are currently treated with a small number of chemotherapeutics, which are hampered by a variety of limitations reaching from efficacy and toxicity complications to drug-resistance problems. Here, we explore the forward design of a new class of synthetic trypanocides based on nanostructured, core-shell DNA-lipid particles. In aqueous solution, the particles self-assemble into micelle-type structures consisting of a solvent-exposed, hydrophilic DNA shell and a hydrophobic lipid core. DNA-lipid nanoparticles have membrane-adhesive qualities and can permeabilize lipid membranes. We report the synthesis of DNA-cholesterol nanoparticles, which specifically subvert the membrane integrity of the T. brucei lysosome, killing the parasite with nanomolar potencies. Furthermore, we provide an example of the programmability of the nanoparticles. By functionalizing the DNA shell with a spliced leader (SL)-RNA-specific DNAzyme, we target a second trypanosome-specific pathway (dual-target approach). The DNAzyme provides a backup to counteract the recovery of compromised parasites, which reduces the risk of developing drug resistance.
Collapse
Affiliation(s)
- Robert Knieß
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - Wolf‐Matthias Leeder
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - Paul Reißig
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - Felix Klaus Geyer
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| | - H. Ulrich Göringer
- Molecular GeneticsTechnical University DarmstadtSchnittspahnstr. 1064287DarmstadtGermany
| |
Collapse
|