1
|
Kim MJ, Jeong HJ. Laser-Assisted Photo-Thermal Reaction for Ultrafast Synthesis of Single-Walled Carbon Nanotube/Copper Nanoparticles Hybrid Films as Flexible Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1454. [PMID: 39269116 PMCID: PMC11397256 DOI: 10.3390/nano14171454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The hybridization of single-walled carbon nanotubes (SWCNTs) and Cu nanoparticles offers a promising strategy for creating highly conductive and mechanically stable fillers for flexible printed electronics. In this study, we report the ultrafast synthesis of SWCNT/Cu hybrid nanostructures and the fabrication of flexible electrodes under ambient conditions through a laser-induced photo-thermal reaction. Thermal energy generated from the nonradiative relaxation of the π-plasmon resonance of SWCNTs was utilized to reduce the Cu-complex (known as a metal-organic decomposition ink) into Cu nanoparticles. We systematically investigated the effects of SWCNT concentration and output laser power on the structural and electrical properties of the SWCNT/Cu hybrid electrodes. The SWCNT/Cu electrodes achieved a minimum electrical resistivity of 46 μohm·cm, comparable to that of the metal-based printed electrodes. Mechanical bending tests demonstrated that the SWCNT/Cu electrodes were highly stable and durable, with no significant deformation observed even after 1000 bending cycles. Additionally, the electrodes showed rapid temperature increases and stable Joule heating performance, reaching temperatures of nearly 80 °C at an applied voltage of less than 3.5 V.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
- Department of Electro-Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Republic of Korea
| | - Hee Jin Jeong
- Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Republic of Korea
- Department of Electro-Functionality Material Engineering, University of Science and Technology (UST), Changwon 51543, Republic of Korea
| |
Collapse
|
2
|
Sharna S, Rouchon V, Legens C, Taleb A, Stanescu S, Bouillet C, Lambert A, Briois V, Chiche D, Gay A, Ersen O. Role of Copper Migration in Nanoscale Ageing of Supported CuO/Al
2
O
3
in Redox Conditions: A Combined Multiscale X‐ray and Electron Microscopy Study. ChemCatChem 2023. [DOI: 10.1002/cctc.202201259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sharmin Sharna
- IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP3, 69360 Solaize France
- Institut de Physique et de Chimie des Matériaux de Strasbourg 67034 Strasbourg France
| | - Virgile Rouchon
- IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP3, 69360 Solaize France
| | - Christèle Legens
- IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP3, 69360 Solaize France
| | - Anne‐Lise Taleb
- IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP3, 69360 Solaize France
| | - Stefan Stanescu
- Synchrotron Soleil l'Orme des Merisiers BP48, 91192 Saint-Aubin Gif-sur-Yvette France
| | - Corinne Bouillet
- Institut de Physique et de Chimie des Matériaux de Strasbourg 67034 Strasbourg France
| | - Arnold Lambert
- IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP3, 69360 Solaize France
| | - Valerie Briois
- Synchrotron Soleil l'Orme des Merisiers BP48, 91192 Saint-Aubin Gif-sur-Yvette France
| | - David Chiche
- IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP3, 69360 Solaize France
| | - Anne‐Sophie Gay
- IFP Energies nouvelles Rond-point de l'échangeur de Solaize BP3, 69360 Solaize France
| | - Ovidiu Ersen
- Institut de Physique et de Chimie des Matériaux de Strasbourg 67034 Strasbourg France
| |
Collapse
|
3
|
Wu Y, Li Y, Han S, Li M, Shen W. Atomic-Scale Engineering of CuO x-Au Interfaces over AuCu Single-Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55644-55652. [PMID: 36507662 DOI: 10.1021/acsami.2c17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A face-centered tetragonal (fct) AuCu particle with a size of 7.1 nm and an Au/Cu molar ratio of 1/1 was coated by a silica shell of 6 nm thickness. Segregation of Cu atoms from the metal particle under an oxidative atmosphere precisely mediated the CuOx-Au interfacial structure by simply varying the temperature. As raising the temperature from 473 to 773 K, more Cu atoms emigrated from the AuCu particle and were oxidized into CuOx layers that grew up to 0.8 nm in thickness. Simultaneously, the size of the Au-rich particle lowered moderately while the crystalline structure transformed from the fct phase into the face-centered cubic (fcc) phase. The CuOx-Au interface shifted from the CuOx monolayer bound to Au single-atoms to Au@CuOx core-shell geometry, while the catalytic activity for CO oxidation at 433 K decreased dramatically. Moreover, a sharp loss in activity was observed as the crystal-phase transition occurred. This change in catalytic performance was ascribed to the geometrical configuration at the interfacial sites: the synergetic effect between the fct-AuCu particle and CuOx monolayer contributed to the much higher activity, whereas the fcc-AuCu/Au particle weakened its interaction with the thicker CuOx layer and thus decreased the activity.
Collapse
Affiliation(s)
- Yongbin Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Nilsson S, Nielsen MR, Fritzsche J, Langhammer C, Kadkhodazadeh S. Competing oxidation mechanisms in Cu nanoparticles and their plasmonic signatures. NANOSCALE 2022; 14:8332-8341. [PMID: 35616189 DOI: 10.1039/d2nr01054b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemical reactions involving nanoparticles often follow complex processes. In this respect, real-time probing of single nanoparticles under reactive conditions is crucial for uncovering the mechanisms driving the reaction pathway. Here, we have captured in situ the oxidation of single Cu nanoparticles to unravel a sequential competitive activation of different mechanisms at temperatures 50-200 °C. Using environmental scanning transmission electron microscopy, we monitor the evolution of oxide formation with sub-nanometre spatial resolution, and show how the prevalence of oxide island nucleation, Cabrera-Mott, Valensi-Carter and Kirkendall mechanisms under different conditions determines the morphology of the particles. Moreover, using in situ electron energy-loss spectroscopy, we probe the localised surface plasmons of individual particles during oxidation, and with the aid of finite-difference time-domain electrodynamic simulations investigate the signature of each mechanism in their plasmonic response. Our results shed light on the rich and intricate processes involved in the oxidation of nanoparticles, and provide in-depth insight into how these processes govern their morphology and optical response, beneficial for applications in catalysis, sensing, nanomedicine and plasmonics.
Collapse
Affiliation(s)
- Sara Nilsson
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Monia R Nielsen
- DTU Nanolab, Technical University of Denmark, Fysikvej, 2800 Kgs Lyngby, Denmark.
| | - Joachim Fritzsche
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Christoph Langhammer
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden.
| | - Shima Kadkhodazadeh
- DTU Nanolab, Technical University of Denmark, Fysikvej, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
5
|
Cao P, Tang P, Bekheet MF, Du H, Yang L, Haug L, Gili A, Bischoff B, Gurlo A, Kunz M, Dunin-Borkowski RE, Penner S, Heggen M. Atomic-Scale Insights into Nickel Exsolution on LaNiO 3 Catalysts via In Situ Electron Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:786-796. [PMID: 35059098 PMCID: PMC8762657 DOI: 10.1021/acs.jpcc.1c09257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Using a combination of in situ bulk and surface characterization techniques, we provide atomic-scale insight into the complex surface and bulk dynamics of a LaNiO3 perovskite material during heating in vacuo. Driven by the outstanding activity LaNiO3 in the methane dry reforming reaction (DRM), attributable to the decomposition of LaNiO3 during DRM operation into a Ni//La2O3 composite, we reveal the Ni exsolution dynamics both on a local and global scale by in situ electron microscopy, in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy. To reduce the complexity and disentangle thermal from self-activation and reaction-induced effects, we embarked on a heating experiment in vacuo under comparable experimental conditions in all methods. Associated with the Ni exsolution, the remaining perovskite grains suffer a drastic shrinkage of the grain volume and compression of the structure. Ni particles mainly evolve at grain boundaries and stacking faults. Sophisticated structure analysis of the elemental composition by electron-energy loss mapping allows us to disentangle the distribution of the different structures resulting from LaNiO3 decomposition on a local scale. Important for explaining the DRM activity, our results indicate that most of the Ni moieties are oxidized and that the formation of NiO occurs preferentially at grain edges, resulting from the reaction of the exsolved Ni particles with oxygen released from the perovskite lattice during decomposition via a spillover process from the perovskite to the Ni particles. Correlating electron microscopy and X-ray diffraction data allows us to establish a sequential two-step process in the decomposition of LaNiO3 via a Ruddlesden-Popper La2NiO4 intermediate structure. Exemplified for the archetypical LaNiO3 perovskite material, our results underscore the importance of focusing on both surface and bulk characterization for a thorough understanding of the catalyst dynamics and set the stage for a generalized concept in the understanding of state-of-the art catalyst materials on an atomic level.
Collapse
Affiliation(s)
- Pengfei Cao
- School of Chemical
Engineering and Technology, Xi’an
Jiaotong University, Xi’an 710049, China
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Pengyi Tang
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
- State Key Laboratory
of Information Functional Materials, 2020 X-Lab, ShangHai Institute
of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Maged F. Bekheet
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Hongchu Du
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Luyan Yang
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Leander Haug
- Department of Physical Chemistry, University
of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Albert Gili
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Benjamin Bischoff
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Aleksander Gurlo
- Chair of Advanced
Ceramic Materials, Institut für Werkstoffwissenschaften und
-technologien, Technical University Berlin, Hardenbergstrasse 40, D-10623 Berlin, Germany
| | - Martin Kunz
- Advanced Light Source, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rafal E. Dunin-Borkowski
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| | - Simon Penner
- Department of Physical Chemistry, University
of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Marc Heggen
- Ernst Ruska-Centre
for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Leo-Brandt-Strasse 1, D-52428 Jülich, Germany
| |
Collapse
|
6
|
Scandurra A, Censabella M, Boscarino S, Condorelli GG, Grimaldi MG, Ruffino F. Fabrication of Cu(II) oxide-hydroxide nanostructures onto graphene paper by laser and thermal processes for sensitive nano-electrochemical sensing of glucose. NANOTECHNOLOGY 2021; 33:045501. [PMID: 34610585 DOI: 10.1088/1361-6528/ac2d0b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Glucose electrochemical sensors based on nanostructures of CuO/Cu(OH)2onto graphene paper were prepared by thermal (solid) and nanosecond pulsed laser (molten phase) dewetting of a CuO layer 6 nm thin deposited by sputtering. Dewetted systems, obtained without the use of any binder, act as array of nanoelectrodes. Solid state and molten phase dewetting produce nanostructures of copper oxide-hydroxide with different average size, shape and surface composition. Molten phase dewetting originates particles with size below 100 nm, while solid state dewetting produces particles with average size of about 200 nm. Moreover, molten phase dewetting produce drop-shaped nanostructures, conversely nanostructures derived from solid state dewetting are multifaceted. X-ray photoelectron spectroscopy (XPS) characterization revealed that the surface of nanostructures is formed by a copper(II) species CuO and Cu(OH)2. Shape of anodic branch of the cyclic voltammograms of glucose in alkali solution evidenced a convergent diffusion mechanism. Analytical performances in amperometric mode are as good as or better than other sensors based on copper oxide. Amperometric detection of glucose was done at potential as low as 0.4 V versus saturated calomel electrode by both types of electrodes. Linear range from 50μM to 10 mM, sensitivity ranging from 7 to 43μA cm-2mM-1and detection limit of 7μM was obtained. Good analytical performances were obtained by laser dewetted electrodes with a low copper content up to 1.2 by atoms percentage of the surface. Analytical performance of the proposed electrodes is compliant for the determination of glucose both in blood serum, saliva or tear.
Collapse
Affiliation(s)
- Antonino Scandurra
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | - Maria Censabella
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | - Stefano Boscarino
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | | | - Maria Grazia Grimaldi
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| | - Francesco Ruffino
- Department of Physics and Astronomy Ettore Majorana of University of Catania, via Santa Sofia 64, 95123 Catania, Italy
- Institute for Microelectronics and Microsystems of National Research Council of Italy (CNR-IMM), via Santa Sofia 64, 95123 Catania, Italy
| |
Collapse
|
7
|
Penner S. How the in situ monitoring of bulk crystalline phases during catalyst activation results in a better understanding of heterogeneous catalysis. CrystEngComm 2021; 23:6470-6480. [PMID: 34602861 PMCID: PMC8474056 DOI: 10.1039/d1ce00817j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 12/03/2022]
Abstract
The present Highlight article shows the importance of the in situ monitoring of bulk crystalline compounds for a more thorough understanding of heterogeneous catalysts at the intersection of catalysis, materials science, crystallography and inorganic chemistry. Although catalytic action is widely regarded as a purely surface-bound phenomenon, there is increasing evidence that bulk processes can detrimentally or beneficially influence the catalytic properties of various material classes. Such bulk processes include polymorphic transformations, formation of oxygen-deficient structures, transient phases and the formation of a metal-oxide composite. The monitoring of these processes and the subsequent establishment of structure-property relationships are most effective if carried out in situ under real operation conditions. By focusing on synchrotron-based in situ X-ray diffraction as the perfect tool to follow the evolution of crystalline species, we exemplify the strength of the concept with five examples from various areas of catalytic research. As catalyst activation studies are increasingly becoming a hot topic in heterogeneous catalysis, the (self-)activation of oxide- and intermetallic compound-based materials during methanol steam and methane dry reforming is highlighted. The perovskite LaNiO3 is selected as an example to show the complex structural dynamics before and during methane dry reforming, which is only revealed upon monitoring all intermediate crystalline species in the transformation from LaNiO3 into Ni/La2O3/La2O2CO3. ZrO2-based materials form the second group, indicating the in situ decomposition of the intermetallic compound Cu51Zr14 into an epitaxially stabilized Cu/tetragonal ZrO2 composite during methanol steam reforming, the stability of a ZrO0.31C0.69 oxycarbide and the gas-phase dependence of the tetragonal-to-monoclinic ZrO2 polymorphic transformation. The latter is the key parameter to the catalytic understanding of ZrO2 and is only appreciated in full detail once it is possible to follow the individual steps of the transformation between the crystalline polymorphic structures. A selected example is devoted to how the monitoring of crystalline reactive carbon during methane dry reforming operation aids in the mechanistic understanding of a Ni/MnO catalyst. The most important aspect is the strict use of in situ monitoring of the structural changes occurring during (self-)activation to establish meaningful structure-property relationships allowing conclusions beyond isolated surface chemical aspects.
Collapse
Affiliation(s)
- Simon Penner
- Institute of Physical Chemistry, University of Innsbruck Innrain 52c A-6020 Innsbruck Austria +4351250758003
| |
Collapse
|