1
|
Xu J, Sun H, Zhang Z, Guo Z, Le S, Chen H. Folding and Misfolding Dynamics of Irisin Protein Revealed by Single-Molecule Magnetic Tweezers. J Phys Chem Lett 2024; 15:11954-11960. [PMID: 39576132 DOI: 10.1021/acs.jpclett.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
Irisin, a fibronectin III protein secreted by muscles during physical exercise, plays a significant role in the browning of white fat and cell adhesion, highlighting the importance of its conformational transitions. In this study, we investigated the folding and unfolding dynamics of a single irisin domain using a single-molecule manipulation technique known as magnetic tweezers. In addition to the native state, irisin can also fold transiently into a misfolded state. We determined the folding free energies of the native and misfolded states as well as their force-dependent folding and unfolding rates. The free energy of the misfolded state is higher than that of the unfolded state, and the misfolded state has a homogeneous force-dependent unfolding rate. The stable native state demonstrates heterogeneous unfolding rates that are within ∼1 order of magnitude. Via comparison with the well-studied 10th fibronectin III domain that has a partially folded intermediate state, our study demonstrates that proteins with similar structure can have distinct folding pathways.
Collapse
Affiliation(s)
- Jiashu Xu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hao Sun
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zhuwei Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shimin Le
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
2
|
Yuan L, Sun H, Ma X, Wang Y, Guo Z, Qi X, Le S, Chen H. Ligand-dependent folding and unfolding dynamics and free energy landscapes of acylphosphatase. SOFT MATTER 2024; 20:3780-3786. [PMID: 38639061 DOI: 10.1039/d4sm00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Acylphosphatase (AcP) is an enzyme which catalyses the hydrolysis of acylphosphate. The binding with the phosphate ion (Pi) assumes significance in preserving both the stability and enzymatic activity of AcP. While previous studies using single molecule force spectroscopy explored the mechanical properties of AcP, the influence of Pi on its folding and unfolding dynamic behaviors remains unexplored. In this work, using stable magnetic tweezers, we measured and compared the force-dependent folding and unfolding rates of AcP in the Tris buffer and phosphate buffer within a force range from 2 pN to 40 pN. We found that Pi exerts no discernible effect on the folding dynamics but consistently decreases the force-dependent unfolding rate of AcP by a constant ratio across the entire force spectrum. The free energy landscapes of AcP in the absence and presence of Pi are constructed. Our results reveal that Pi selectively binds to the native state of AcP, stabilizing it and suggesting the general properties of specific ligand-receptor interactions.
Collapse
Affiliation(s)
- Li Yuan
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Hao Sun
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xuening Ma
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Yang Wang
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingyu Qi
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shimin Le
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China.
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
3
|
Sun H, Le S, Guo Z, Chen H. Exploring the free energy landscape of proteins using magnetic tweezers. Methods Enzymol 2024; 694:237-261. [PMID: 38492953 DOI: 10.1016/bs.mie.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Proteins fold to their native states by searching through the free energy landscapes. As single-domain proteins are the basic building block of multiple-domain proteins or protein complexes composed of subunits, the free energy landscapes of single-domain proteins are of critical importance to understand the folding and unfolding processes of proteins. To explore the free energy landscapes of proteins over large conformational space, the stability of native structure is perturbed by biochemical or mechanical means, and the conformational transition process is measured. In single molecular manipulation experiments, stretching force is applied to proteins, and the folding and unfolding transitions are recorded by the extension time course. Due to the broad force range and long-time stability of magnetic tweezers, the free energy landscape over large conformational space can be obtained. In this article, we describe the magnetic tweezers instrument design, protein construct design and preparation, fluid chamber preparation, common-used measuring protocols including force-ramp and force-jump measurements, and data analysis methods to construct the free energy landscape. Single-domain cold shock protein is introduced as an example to build its free energy landscape by magnetic tweezers measurements.
Collapse
Affiliation(s)
- Hao Sun
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, P.R. China
| | - Shimin Le
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, P.R. China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, P.R. China.
| | - Hu Chen
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, P.R. China; Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, P.R. China.
| |
Collapse
|
4
|
Sun H, Guo Z, Hong H, Zhang Z, Zhang Y, Wang Y, Le S, Chen H. Free Energy Landscape of Type III Fibronectin Domain with Identified Intermediate State and Hierarchical Symmetry. PHYSICAL REVIEW LETTERS 2023; 131:218402. [PMID: 38072617 DOI: 10.1103/physrevlett.131.218402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
The tenth domain of type III fibronectin (FNIII_{10}) mediates cell adhesion to the extracellular matrix. Despite its structural similarity to immunoglobulin domains, FNIII_{10} exhibits unique unfolding behaviors. We employed magnetic tweezers to investigate the unfolding and folding dynamics of FNIII_{10} under physiological forces (4-50 pN). Our results showed that FNIII_{10} follows a consistent transition pathway with an intermediate state characterized by detached A and G β strands. We determined the folding free energies and all force-dependent transition rates of FNIII_{10} and found that both unfolding rates from the native state to the intermediate state and from the intermediate state to the unfolded state deviate from Bell's model. We constructed a quantitative free energy landscape with well-defined traps and barriers that exhibits a hierarchical symmetrical pattern. Our findings provide a comprehensive understanding of FNIII_{10} conformational dynamics and demonstrate how free energy landscape of multistate biomolecules can be precisely mapped, illuminating the relationship between thermal stability, intermediate states, and folding rates in protein folding.
Collapse
Affiliation(s)
- Hao Sun
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Haiyan Hong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Zhuwei Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yuhang Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yang Wang
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shimin Le
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
5
|
Song J, Wang M, Zhou L, Tian P, Sun Z, Sun J, Wang X, Zhuang G, Jiang D, Wu Y, Zhang G. A candidate nanoparticle vaccine comprised of multiple epitopes of the African swine fever virus elicits a robust immune response. J Nanobiotechnology 2023; 21:424. [PMID: 37964304 PMCID: PMC10647103 DOI: 10.1186/s12951-023-02210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
The African swine fever (ASF) pandemics pose a significant threat to the global swine industry, and the development of safe and effective vaccines is a daunting but necessary challenge. The level and persistence of immunity are very important for the effectiveness of the vaccine. Targeting antigens to antigen presenting cells (APCs) can greatly enhance immunogenicity. In this study, we developed a self-assembled nano-ASFV vaccine candidate (NanoFVax) targeting DCs, by covalently coupling the self-assembled 24-mer ferritin with the dominant B and T cell epitopes of the highly immunogenic ASFV antigen (p72, CD2v, pB602L and p30) and fused with the chemokine receptor XCL1 (a DC targeting molecule) through the SpyTag/SpyCatcher protein ligase system. Compared to monomeric protein, the nanoparticle vaccines can induce a more robust T-cell response, and the high-level antibody response against ASFV can last for more than 231 days. Therefore, the NanoFVax is a novel and promising vaccine candidate for ASFV.
Collapse
Affiliation(s)
- Jinxing Song
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengxiang Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Zhou
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panpan Tian
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - ZhuoYa Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junru Sun
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuannian Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China
| | - Guoqing Zhuang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Dawei Jiang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Wu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Gaiping Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Tabassum T, Pietrogrande G, Healy M, Wolvetang EJ. CRISPR-Cas9 Direct Fusions for Improved Genome Editing via Enhanced Homologous Recombination. Int J Mol Sci 2023; 24:14701. [PMID: 37834150 PMCID: PMC10572186 DOI: 10.3390/ijms241914701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
DNA repair in mammalian cells involves the coordinated action of a range of complex cellular repair machinery. Our understanding of these DNA repair processes has advanced to the extent that they can be leveraged to improve the efficacy and precision of Cas9-assisted genome editing tools. Here, we review how the fusion of CRISPR-Cas9 to functional domains of proteins that directly or indirectly impact the DNA repair process can enhance genome editing. Such studies have allowed the development of diverse technologies that promote efficient gene knock-in for safer genome engineering practices.
Collapse
Affiliation(s)
- Tahmina Tabassum
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (T.T.); (G.P.)
| | - Giovanni Pietrogrande
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (T.T.); (G.P.)
| | - Michael Healy
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia;
| | - Ernst J. Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (T.T.); (G.P.)
| |
Collapse
|
7
|
Zhou R, Zhang L, Zeng B, Zhou Y, Jin W, Zhang G. A novel self-purified auxiliary protein enhances the lichenase activity towards lichenan for biomass degradation. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12608-y. [PMID: 37272940 DOI: 10.1007/s00253-023-12608-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Due to the complex composition of lichenan, lichenase alone cannot always hydrolyze it efficiently. Carbohydrate-binding modules (CBMs) and lytic polysaccharide monooxygenases (LPMOs) have been confirmed to increase the hydrolysis efficiency of lichenases. However, their practical application was hampered by the complex and costly preparation procedure, as well as the poor stability of LPMOs. Herein, we discovered a novel and stable auxiliary protein named SCE to boost the hydrolysis efficiency. SCE was composed of SpyCatcher (SC) and elastin-like polypeptides (ELPs) and could be easily and cheaply prepared. Under the optimal conditions, the boosting degree for SCE/lichenase was 1.45, and the reducing sugar yield improved by nearly 45%. The results of high-performance liquid chromatography (HPLC) indicated that SCE had no influence on the hydrolysis pattern of lichenase. Through the experimental verification and bioinformatics analysis, we proposed the role of SCE in promoting the interaction between the lichenase and substrates. These findings endow SC with a novel function in binding to insoluble lichenan, paving the way for biomass degradation and biorefinery. KEY POINTS: • A novel self-purification auxiliary protein that could boost the hydrolysis efficiency of lichenase has been identified. • The protein is highly produced, simple to prepare, well stable, and does not require any external electron donor. • The novel function of SpyCatcher in binding to insoluble lichenan was first demonstrated.
Collapse
Affiliation(s)
- Rui Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Lingzhi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Bo Zeng
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Yanhong Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China
| | - Wenhui Jin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian Province, People's Republic of China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province, People's Republic of China.
| |
Collapse
|
8
|
Ma X, Sun H, Hong H, Guo Z, Su H, Chen H. Free-energy landscape of two-state protein acylphosphatase with large contact order revealed by force-dependent folding and unfolding dynamics. Phys Rev E 2022; 106:024404. [PMID: 36109974 DOI: 10.1103/physreve.106.024404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Acylphosphatase (AcP) is a small protein with 98 amino acid residues that catalyzes the hydrolysis of carboxyl-phosphate bonds. AcP is a typical two-state protein with slow folding rate due to its relatively large contact order in the native structure. The mechanical properties and unfolding behavior of AcP has been studied by atomic force microscope. Here using stable magnetic tweezers, we measured the force-dependent folding rates within a force range 1-3 pN, and unfolding rates 15-40 pN. The obtained unfolding rates show different force sensitivities at forces below and above ∼27 pN, which determines a free-energy landscape with two energy barriers. Our results indicate that the free-energy landscape of small globule proteins have general Bactrian camel shape, and large contact order of the native state produces a high barrier dominate at low forces.
Collapse
Affiliation(s)
- Xuening Ma
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hao Sun
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Haiyan Hong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| | - Huanhuan Su
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
- Oujiang Laboratory, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
9
|
马 雪. Single Molecule Magnetic Tweezers Study of Unfolding Kinetics of Acylphosphatase. Biophysics (Nagoya-shi) 2022. [DOI: 10.12677/biphy.2022.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
10
|
Two energy barriers and a transient intermediate state determine the unfolding and folding dynamics of cold shock protein. Commun Chem 2021; 4:156. [PMID: 36697724 PMCID: PMC9814876 DOI: 10.1038/s42004-021-00592-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 01/28/2023] Open
Abstract
Cold shock protein (Csp) is a typical two-state folding model protein which has been widely studied by biochemistry and single molecule techniques. Recently two-state property of Csp was confirmed by atomic force microscopy (AFM) through direct pulling measurement, while several long-lifetime intermediate states were found by force-clamp AFM. We systematically studied force-dependent folding and unfolding dynamics of Csp using magnetic tweezers with intrinsic constant force capability. Here we report that Csp mostly folds and unfolds with a single step over force range from 5 pN to 50 pN, and the unfolding rates show different force sensitivities at forces below and above ~8 pN, which determines a free energy landscape with two barriers and a transient intermediate state between them along one transition pathway. Our results provide a new insight on protein folding mechanism of two-state proteins.
Collapse
|