1
|
Naskar A, Kilari S, Baranwal G, Kane J, Misra S. Nanoparticle-Based Drug Delivery for Vascular Applications. Bioengineering (Basel) 2024; 11:1222. [PMCID: PMC11673055 DOI: 10.3390/bioengineering11121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 01/05/2025] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have received widespread attention due to the excellent physicochemical properties of nanomaterials. Different types of NPs such as lipid NPs, poly(lactic-co-glycolic) acid (PLGA) NPs, inorganic NPs (e.g., iron oxide and Au), carbon NPs (graphene and carbon nanodots), 2D nanomaterials, and biomimetic NPs have found favor as drug delivery vehicles. In this review, we discuss the different types of customized NPs for intravascular drug delivery, nanoparticle behaviors (margination, adhesion, and endothelium uptake) in blood vessels, and nanomaterial compatibility for successful drug delivery. Additionally, cell surface protein targets play an important role in targeted drug delivery, and various vascular drug delivery studies using nanoparticles conjugated to these proteins are reviewed. Finally, limitations, challenges, and potential solutions for translational research regarding NP-based vascular drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Misra
- Vascular and Interventional Radiology Translational Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA; (A.N.); (S.K.); (G.B.); (J.K.)
| |
Collapse
|
2
|
Deng S, Zhao Q, Liu D, Xiong Z, Zhang S, Zhang X, Wu F, Xing B. Black phosphorus nanosheets induce autophagy dysfunction by a size- and surface modification-related impairment of lysosomes in macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117073. [PMID: 39332199 DOI: 10.1016/j.ecoenv.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
The widespread application of black phosphorus nanosheets (BPNSs) raises concerns about their potential impact on human health. Although that the autophagy-inducing properties of BPNSs in cancer cells are documented, their effects on macrophages-key components of the immune system and the mechanisms involved remain obscure, especially in terms of the influences of BPNS the size and surface modifications on the autophagic process. This study investigated the effects of bare BPNSs and PEGylated BPNSs (BP-PEG) on macrophage autophagy and its underlying mechanisms by comprehensive biochemical analyses. The results indicated that both BPNSs and BP-PEG are internalized by RAW264.7 cells through phagocytosis and caveolin-dependent endocytosis, leading to lysosomal accumulation. The internalized BPNSs induced mitochondrial dysfunction, which subsequently elevated the NAD+/NADH ratio and activated the SIRT-1 pathway, initiating autophagy. However, BPNSs disrupted the autophagic flux by impairing autolysosome formation, leading to apoptosis in a size-dependent manner. In contrast, BP-PEG preserved lysosomal integrity, maintaining autophagic activity and cell viability. These findings deepen our understanding of the influence of nanosheet size and surface modifications on macrophage autophagy, contributing to the formulation of regulatory guidelines to minimize the potential adverse effects and health risks associated with BPNS utilization in various applications.
Collapse
Affiliation(s)
- Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Huang L, Du M, Sun D, He M, Liu Z, Wu R, Jiang Y, Qi L, Wang J, Zhu C, Li Y, Liu L, Feng G, Zhang L. Propelling Multi-Modal Therapeutics of PEEK Implants through the Power of NO evolving Covalent Organic Frameworks (COFs). SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306508. [PMID: 37919860 DOI: 10.1002/smll.202306508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Indexed: 11/04/2023]
Abstract
The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.
Collapse
Affiliation(s)
- Leizhen Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Meixuan Du
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Miaomiao He
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ruibang Wu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yulin Jiang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute & West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Hu C, Xu Y, Wang M, Cui S, Zhang H, Lu L. Bisphenol analogues induce thyroid dysfunction via the disruption of the thyroid hormone synthesis pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165711. [PMID: 37487893 DOI: 10.1016/j.scitotenv.2023.165711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Bisphenol analogues are widely used in industrial and daily-use consumer products having imperfect thyroid hormones (THs) structures. Widespread exposure interferes with thyroid-related health outcomes in human. The mechanisms of disruption on TH synthesis and subsequent thyroid dysfunction by different bisphenol analogues remain unclear. Here, we evaluated bisphenol-induced thyroid endocrine disruption in C57BL/6 mice at doses of 0.002, 0.02, 2, and 20 mg/kg body weight/day (BW/d) for five consecutive weeks. Administration of 20 mg/kg BW/d bisphenol S (BPS) and 2 mg/kg BW/d tetrabromobisphenol S (TBBPS) significantly increased serum thyrotropin (TSH) levels to 1.21-fold and 1.20-fold of control group, respectively, indicating that bisphenols induced thyroid dysfunction in mice. Height of the thyroid follicle epithelium significantly increased to 1.27-, 1.24-, 1.26-, and 1.36-fold compared to control group with BPA, BPS, TBBPA, and TBBPS at 20 mg/kg BW/d, respectively, indicating impairment of the thyroid gland structure, and TBBPS showed potent effect. Exposure to bisphenol analogues of 0.02 mg/kg BW/d downregulated the protein expression levels of thyrotropin receptor, the sodium/iodide symporter, thyroperoxidase. The TH-dependent effects were further determined using the T-Screen assay at 10-11 M to 10-5 M concentrations. Bisphenol analogues significantly decreased TH-dependent GH3 cell proliferation, indicating the antagonistic activity of bisphenol analogues. The gene responsible for THs synthesis of thyrotropin releasing hormone receptor and TSH were upregulated, but downregulation of thyroid receptor β was observed. Our results suggest that bisphenol analogues distinctly induce thyroid dysfunction via TH synthesis, implying adverse effect of bisphenol analogues on TH homeostasis and subsequent physiological processes.
Collapse
Affiliation(s)
- Chao Hu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China
| | - Yeqing Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mingmin Wang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018, China; Hangzhou International Urbanology Research Center, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Zhang L, You J, Lv H, Liu M, Quni S, Liu X, Zhou Y. Black Phosphorus - A Rising Star in the Antibacterial Materials. Int J Nanomedicine 2023; 18:6563-6584. [PMID: 38026531 PMCID: PMC10644884 DOI: 10.2147/ijn.s438448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability. However, the current theory about the antibacterial properties of BP is still insufficient, and the relevant mechanism of action needs to be further studied. In this paper, we introduced the structure and properties of BP, elaborated the mechanism of BP in bacterial infection, and systematically reviewed the application of BP composite materials in the field of antibacterial. At the same time, we also discussed the challenges faced by the current research and application of BP, which laid a solid theoretical foundation for the further study of BP in the future.
Collapse
Affiliation(s)
- Lu Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- School of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Sezhen Quni
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, People’s Republic of China
- School of Stomatology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
6
|
Dou L, Liu R, Wang Z, Huang Z, Wang L, Lin M, Hou X, Zhang J, Cheng T, He Q, Wang D, Guo D, An R, Wei L, Yao Y, Zhang Y. Black phosphorus quantum dots induced ferroptosis in lung cell via increasing lipid peroxidation and iron accumulation. Food Chem Toxicol 2023; 179:113952. [PMID: 37481226 DOI: 10.1016/j.fct.2023.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Black Phosphorus Quantum Dots (BP-QDs) have potential applications in biomedicine. BP-QDs may enter the body through the respiratory tract during grinding and crushing production and processing, causing respiratory toxicity. Ferroptosis is an oxidative, iron-dependent form of cell death. Here, respiratory toxicity of BP-QDs has been validated in mice and human bronchial epithelial cells. After 24 h of exposure to different doses (4-32 μg/mL) of BP-QDs, intracellular lipid peroxidation and iron overload occurred in Beas-2B cells. After 4 times exposures by noninvasive tracheal instillation at four doses [0, 0.25, 0.5 and 1 (mg/kg/48h)], all animals were sacrificed, organs were removed, processed for pathological examination and molecular analysis. Iron overload, glutathione (GSH) depletion and lipid peroxidation in the lung tissue of mice in the exposure group. Furthermore, based on the ferroptosis-associated protein and mRNA expression, it was hypothesized that BP-QDs induced ferroptosis through increasing intracellular free iron and polyunsaturated fatty acid synthesis. By comparing with previous studies, we speculate that primary cells generally are more sensitive to BP-QDs-induced damage than cancer cells. In summary, findings in the present study confirmed that BP-QDs induce ferroptosis via increasing lipid peroxidation and iron accumulation in vitro and in vivo.
Collapse
Affiliation(s)
- Liangding Dou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Rong Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhaojizhe Wang
- School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhi Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Lei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Mo Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Xin Hou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Jinwen Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Tantan Cheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Qi He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Ran An
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Lifang Wei
- Department of Nephrology, The Third People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Yongxing Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
7
|
Zhao Q, Donskyi IS, Xiong Z, Liu D, Page TM, Zhang S, Deng S, Xu Y, Zeng J, Wu F, Zhang X. Recent Advances in the Biological Responses to Nano-black Phosphorus: Understanding the Importance of Intrinsic Properties and Cell Types. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11373-11388. [PMID: 37470763 DOI: 10.1021/acs.est.3c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The production scalability and increasing demand for nano-black phosphorus materials (nano-BPs) inevitably lead to their environmental leakage, thereby raising the risk of human exposure through inhalation, ingestion, dermal, and even intravenous pathways. Consequently, a systematic evaluation of their potential impacts on human health is necessary. This Review outlines recent progress in the understanding of various biological responses to nano-BPs. Attention is particularly given to the inconsistent toxicological findings caused by a wide variation of nano-BPs' physicochemical properties, toxicological testing methods, and cell types examined in each study. Additionally, cellular uptake and intracellular trafficking, cell death modes, immunological effects, and other biologically relevant processes are discussed in detail, providing evidence for the potential health implications of nano-BPs. Finally, we address the remaining challenges related to the health risk evaluation of nano-BPs and propose a broader range of applications for these promising nanomaterials.
Collapse
Affiliation(s)
- Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taylor M Page
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuze Xu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Jin Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuejiao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
8
|
Gui X, Zhang H, Zhang R, Li Q, Zhu W, Nie Z, Zhao J, Cui X, Hao W, Wen X, Shen W, Song H. Exosomes incorporated with black phosphorus quantum dots attenuate retinal angiogenesis via disrupting glucose metabolism. Mater Today Bio 2023; 19:100602. [PMID: 36942311 PMCID: PMC10024194 DOI: 10.1016/j.mtbio.2023.100602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 03/06/2023] Open
Abstract
Black phosphorus quantum dots (BPQDs) have shown potential in tumor therapy, however, their anti-angiogenic functions have not been studied. Although BPQDs are easily degraded to non-toxic phosphrous, the reported toxicity, poor stability, and non-selectivity largely limit their further application in medicine. In this study, a vascular targeting, biocompatible, and cell metabolism-disrupting nanoplatform is engineered by incorporating BPQDs into exosomes modified with the Arg-Gly-Asp (RGD) peptide (BPQDs@RGD-EXO nanospheres, BREs). BREs inhibit endothelial cells (ECs) proliferation, migration, tube formation, and sprouting in vitro. The anti-angiogenic role of BREs in vivo is evaluated using mouse retinal vascular development model and oxygen-induced retinopathy model. Combined RNA-seq and metabolomic analysis reveal that BREs disrupt glucose metabolism, which is further confirmed by evaluating metabolites, ATP production and the c-MYC/Hexokinase 2 pathway. These BREs are promising anti-angiogenic platforms for the treatment of pathological retinal angiogenesis with minimal side effects.
Collapse
Affiliation(s)
- Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiye Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Jiawei Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Xiao Cui
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
| | - Weiju Hao
- University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM&Western Medicine Hospital, Chengdu University of TCM, Chengdu, 610016, China
- Corresponding author.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, No. 168 Changhai Road, Shanghai, 200433, China
- Corresponding author.
| |
Collapse
|
9
|
Chen J, Huan W, Mao L, Huang M, Wu Y, Zhuang S, Cui S. Impaired barrier integrity of endothelial cells induced by PEGylated black phosphorus nanosheets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160645. [PMID: 36464060 DOI: 10.1016/j.scitotenv.2022.160645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
PEGylated black phosphorus nanosheets (PEG-BPNSs) have shown promising applications in biomedicine and potentially interact with the vasculature following iatrogenic exposures. Whether the exposure to PEG-BPNSs could induce toxic effects on endothelial cells that line the blood vessels remains largely unknown. Herein, we investigate the cellular response and transcriptional profiling of human umbilical vein endothelial cells (HUVECs) after the exposure to BPNSs and PEG-BPNSs. BPNSs and PEG-BPNSs induce cellular elongation and cause significant cytotoxicity to HUVECs at 0.8 μg/mL, with viabilities of 87.8% and 87.7% respectively. The transcriptome analysis indicates that BPNSs and PEG-BPNSs at 0.4 μg/mL cause marked alterations in the expression of genes associated with detection of stimulus, ion transmembrane transport and components of plasma membrane. BPNSs and PEG-BPNSs at 0.4 μg/mL decrease the transendothelial electrical resistance (TEER) across monolayers of HUVECs by 22.8% and 20.3% compared to the control, respectively. The disturbance of tight junctions (TJs) after 24 h exposure to 0.4 μg/mL BPNSs and PEG-BPNSs is indicated with the downregulated mRNA expression of zona occluden-1 (ZO-1) by respective 16.5% and 29.9%, which may be involved in the impairment of endothelial barrier integrity. Overall, the response of HUVECs to PEG-BPNSs and BPNSs has no statistical difference, suggesting that PEGylation does not attenuate the BPNSs-induced endothelial injury. This study demonstrates the detrimental effects of BPNSs and PEG-BPNSs on barrier integrity of HUVECs, contributing to our understanding on the potential toxicological mechanisms.
Collapse
Affiliation(s)
- Jiayan Chen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Lijuan Mao
- Analysis Center of Agrobiology and Environmental Sciences, Faculty of Agriculture, Life and Environment Sciences (ACAES), Zhejiang University, Hangzhou 310058, China
| | - Meiling Huang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiqu Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
10
|
Wang Y, Li M, Wang S, Ma J, Liu Y, Guo H, Gao J, Yao L, He B, Hu L, Qu G, Jiang G. Deciphering the Effects of 2D Black Phosphorus on Disrupted Hematopoiesis and Pulmonary Immune Homeostasis Using a Developed Flow Cytometry Method. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15869-15881. [PMID: 36227752 PMCID: PMC9671123 DOI: 10.1021/acs.est.2c03675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 05/28/2023]
Abstract
As an emerging two-dimensional nanomaterial with promising prospects, mono- or few-layer black phosphorus (BP) is potentially toxic to humans. We investigated the effects of two types of BPs on adult male mice through intratracheal instillation. Using the flow cytometry method, the generation, migration, and recruitment of immune cells in different organs have been characterized on days 1, 7, 14, and 21 post-exposure. Compared with small BP (S-BP, lateral size at ∼188 nm), large BP (L-BP, lateral size at ∼326 nm) induced a stronger stress lymphopoiesis and B cell infiltration into the alveolar sac. More importantly, L-BP dramatically increased peripheral neutrophil (NE) counts up to 1.9-fold on day 21 post-exposure. Decreased expression of the CXCR4 on NEs, an important regulator of NE retention in the bone marrow, explained the increased NE release into the circulation induced by L-BP. Therefore, BP triggers systemic inflammation via the disruption of both the generation and migration of inflammatory immune cells.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Li
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Shenyang 110819, China
| | - Shunhao Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Shenyang 110819, China
| | - Yaquan Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Guo
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
| | - Linlin Yao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Bin He
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guangbo Qu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- School
of Environmental, Hangzhou Institute for
Advanced Study, UCAS, Hangzhou 310000, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
11
|
Wei B, Niu C, Zhou G, Sun J, Mei Q, An Z, Li M, He M. Nonmetal doped carbon nitride nanosheet as photocatalyst for degradation of 4, 5-dichloroguaiacol. ENVIRONMENTAL RESEARCH 2022; 207:112623. [PMID: 34990610 DOI: 10.1016/j.envres.2021.112623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metal-free photocatalysts for high efficient photocatalytic degradation of pollutants have attracted growing concern in recent years. Herein, relying on density functional theory (DFT) calculations, boron and phosphorus doped C2N layers were explored for the potential of utilization as photocatalysts for 4, 5-dichloroguaiacol (4, 5-DCG) removal. Our computations revealed that the adsorption energy of 4, 5-DCG on B@N-doped C2N layers were 26.56 kcal mol-1, and the ΔG≠ of initial reactions of 4, 5-DCG with OH were also reduced onto the B@N-doped C2N substrates. The band gap of B@N-doped C2N was 2.27 eV. The obtained results showed that the doping of boron atom into C2N layer narrows bandgap, and retains well catalytic performance and adsorption properties. Hence, B@N-doped C2N layer is a promising photocatalyst for organic pollutants removal. Possible degradation pathways of 4, 5-DCG and aquatic toxicity assessment during degradation were also carried out. Products with higher toxicity would be formed and the transformation products were still toxic to three nutrient levels of aquatic organisms (green algae, fish, and daphnia).
Collapse
Affiliation(s)
- Bo Wei
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China; Environment Research Institute, Shandong University, Qingdao, 266237, PR China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, PR China
| | - Chenxi Niu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, PR China
| | - Qiong Mei
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
12
|
Luo Y, Wang X, Cao Y. Transcriptomic-based toxicological investigations of graphene oxide with modest cytotoxicity to human umbilical vein endothelial cells: changes of Toll-like receptor signaling pathways. Toxicol Res (Camb) 2021; 10:1104-1115. [PMID: 34956614 PMCID: PMC8692726 DOI: 10.1093/toxres/tfab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
The wide uses of graphene oxide (GO) lead to the contact of GO with vascular systems, so it is necessary to investigate the toxicological effects of GO to endothelial cells. Recently, we reported that GO of small lateral size (<500 nm) was relatively biocompatible to human umbilical vein endothelial cells (HUVECs), but recent studies by using omics-techniques revealed that nanomaterials (NMs) even without acute cytotoxicity might induce other toxicological effects. This study investigated the effects of GO on HUVECs based on RNA-sequencing and bioinformatics analysis. Even after exposure to 100 μg/ml GO, the cellular viability of HUVECs was higher than 70%. Furthermore, 25 μg/ml GO was internalized but did not induce ultrastructural changes or intracellular superoxide. These results combined indicated GO's relatively high biocompatibility. However, by analyzing the most significantly altered Gene Ontology terms and Kyoto Encyclopedia of Gene and Genomes pathways, we found that 25 μg/ml GO altered pathways related to immune systems' functions and the responses to virus. We further verified that GO exposure significantly decreased Toll-like receptor 3 and interleukin 8 proteins, indicating an immune suppressive effect. However, THP-1 monocyte adhesion was induced by GO with or without the presence of inflammatory stimulus lipopolysaccharide. We concluded that GO might inhibit the immune responses to virus in endothelial cells at least partially mediated by the inhibition of TLR3. Our results also highlighted a need to investigate the toxicological effects of NMs even without acute cytotoxicity by omics-based techniques.
Collapse
Affiliation(s)
- Yingmei Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510632, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
13
|
Yan Z, Chen C, Rosso G, Qian Y, Fan C. Two-Dimensional Nanomaterials for Peripheral Nerve Engineering: Recent Advances and Potential Mechanisms. Front Bioeng Biotechnol 2021; 9:746074. [PMID: 34820361 PMCID: PMC8606639 DOI: 10.3389/fbioe.2021.746074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Peripheral nerve tissues possess the ability to regenerate within artificial nerve scaffolds, however, despite the advance of biomaterials that support nerve regeneration, the functional nerve recovery remains unsatisfactory. Importantly, the incorporation of two-dimensional nanomaterials has shown to significantly improve the therapeutic effect of conventional nerve scaffolds. In this review, we examine whether two-dimensional nanomaterials facilitate angiogenesis and thereby promote peripheral nerve regeneration. First, we summarize the major events occurring after peripheral nerve injury. Second, we discuss that the application of two-dimensional nanomaterials for peripheral nerve regeneration strategies by facilitating the formation of new vessels. Then, we analyze the mechanism that the newly-formed capillaries directionally and metabolically support neuronal regeneration. Finally, we prospect that the two-dimensional nanomaterials should be a potential solution to long range peripheral nerve defect. To further enhance the therapeutic effects of two-dimensional nanomaterial, strategies which help remedy the energy deficiency after peripheral nerve injury could be a viable solution.
Collapse
Affiliation(s)
- Zhiwen Yan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng Chen
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Gonzalo Rosso
- Max Planck Institute for the Science of Light, Erlangen, Germany.,Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.,Institute of Physiology II, University of Münster, Münster, Germany
| | - Yun Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China.,Youth Science and Technology Innovation Studio, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|