1
|
Lin L, Liu Y, Tang R, Ding S, Lin H, Li H. Evodiamine: A Extremely Potential Drug Development Candidate of Alkaloids from Evodia rutaecarpa. Int J Nanomedicine 2024; 19:9843-9870. [PMID: 39345907 PMCID: PMC11430234 DOI: 10.2147/ijn.s459510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024] Open
Abstract
Evodiamine (EVO) is a tryptamine indole alkaloid and the main active ingredient in Evodia rutaecarpa. In recent years, the antitumor, cardioprotective, anti-inflammatory, and anti-Alzheimer's disease effects of EVO have been reported. EVO exerts antitumor effects by inhibiting tumor cell activity and proliferation, blocking the cell cycle, promoting apoptosis and autophagy, and inhibiting the formation of the tumor microvasculature. However, EVO has poor solubility and low bioavailability. Several derivatives with high antitumor activity have been discovered through the structural optimization of EVO, and new drug delivery systems have been developed to improve the solubility and bioavailability of EVO. Current research found that EVO could have toxic effects, such as hepatotoxicity, nephrotoxicity, and cardiac toxicity. This article reviews the pharmacological activity, derivatives, drug delivery systems, toxicity, and pharmacokinetics of EVO and provides research ideas and references for its further in-depth development and clinical applications.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yuling Liu
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Ruying Tang
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Shilan Ding
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Hongmei Lin
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
- National Medical Products Administration Key Laboratory for Research Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hui Li
- Institute Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, People's Republic of China
| |
Collapse
|
2
|
Chen R, Yang J, Wu M, Zhao D, Yuan Z, Zeng L, Hu J, Zhang X, Wang T, Xu J, Zhang J. M2 Macrophage Hybrid Membrane-Camouflaged Targeted Biomimetic Nanosomes to Reprogram Inflammatory Microenvironment for Enhanced Enzyme-Thermo-Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304123. [PMID: 37339776 DOI: 10.1002/adma.202304123] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Excessive inflammatory reactions caused by uric acid deposition are the key factor leading to gout. However, clinical medications cannot simultaneously remove uric acid and eliminate inflammation. An M2 macrophage-erythrocyte hybrid membrane-camouflaged biomimetic nanosized liposome (USM[H]L) is engineered to deliver targeted self-cascading bienzymes and immunomodulators to reprogram the inflammatory microenvironment in gouty rats. The cell-membrane-coating endow nanosomes with good immune escape and lysosomal escape to achieve long circulation time and intracellular retention times. After being uptaken by inflammatory cells, synergistic enzyme-thermo-immunotherapies are achieved: uricase and nanozyme degraded uric acid and hydrogen peroxide, respectively; bienzymes improved the catalytic abilities of each other; nanozyme produced photothermal effects; and methotrexate has immunomodulatory and anti-inflammatory effects. The uric acid levels markedly decrease, and ankle swelling and claw curling are effectively alleviated. The levels of inflammatory cytokines and ROS decrease, while the anti-inflammatory cytokine levels increase. Proinflammatory M1 macrophages are reprogrammed to the anti-inflammatory M2 phenotype. Notably, the IgG and IgM levels in USM[H]L-treated rats decrease substantially, while uricase-treated rats show high immunogenicity. Proteomic analysis show that there are 898 downregulated and 725 upregulated differentially expressed proteins in USM[H]L-treated rats. The protein-protein interaction network indicates that the signaling pathways include the spliceosome, ribosome, purine metabolism, etc.
Collapse
Affiliation(s)
- Ran Chen
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Ziyi Yuan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Linggao Zeng
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Juan Hu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xinping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Jingxin Xu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jingqing Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
4
|
Chen Y, Zhang M, Zhao H, Liu Y, Wang T, Lei T, Xiang X, Lu L, Yuan Z, Xu J, Zhang J. Oral supramolecular nanovectors for dual natural medicine codelivery to prevent gastric mucosal lesion. NANOSCALE 2022; 14:8967-8977. [PMID: 35670481 DOI: 10.1039/d2nr01469f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The oral administration of a single formulation loaded with more than one natural medicine to treat chronic diseases has advantages such as convenience, effectiveness, and economy. Here, using biomaterials approved by the drug administration, we fabricated supramolecular nanovectors containing dual natural medicines to prevent gastric mucosal lesions. Nanovectors exhibited superior intestinal absorption and bioavailability, which might be due to their high dispersion, good muco-adhesiveness, blood-lymph circulation transport, lipid sensing, and protective effects. Molecular docking results clarified the possible mechanisms in aspects of efflux pump (p-glycoprotein and multidrug resistance protein 1) inhibition effects, metabolic enzyme (cytochrome P450 3A4/1A2) blocking effects, serum albumin deposit effects, and dual drug interaction effects. Nanovectors decreased ethanol-induced gastric mucosal lesions by lowering the gastric ulcer index, preventing oxidative damage, decreasing interleukin-6, tumor necrosis factor-α and malondialdehyde, increasing glutathione, superoxide dismutase, and prostaglandin E2 levels. The interactions of inhibitor of nuclear factor-κB or κB kinase-related proteins and dual drugs or nanovector components were simulated computationally to provide an understanding of the gastro-protective action mechanism. In all, industrializable supramolecular nanovectors could effectively co-deliver dual natural medicines via the oral route by improving the pharmacokinetic behavior and exerting protective efficacy of the gastric mucosa by decreasing the oxidative stress and inflammatory level.
Collapse
Affiliation(s)
- Yun Chen
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Hua Zhao
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Yingju Liu
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Lei
- Ningbo Institude for Drug Control, Ningbo 315100, China
| | - Xiaoyan Xiang
- Department of Pharmacy, People's Hospital of Kaizhou District, Chongqing 405400, China
| | - Luyang Lu
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Ziyi Yuan
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jingxin Xu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|