1
|
Pan X, Li Q, Wang T, Shu T, Tao Y. Controllable synthesis of electric double-layer capacitance and pseudocapacitance coupled porous carbon cathode material for zinc-ion hybrid capacitors. NANOSCALE 2024; 16:3701-3713. [PMID: 38291954 DOI: 10.1039/d3nr06258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The designability of the porous structure of carbon material makes it a popular material for zinc-ion hybrid capacitors (ZIHCs). However, the micropore confinement effect leads to sluggish kinetics and is not well resolved yet. In this work, a pore-size controllable carbon material was designed to enhance ion accessibility. The experimental and calculated results revealed that suitable pore sizes and defects were beneficial to ion transfer/adsorption. Meanwhile, oxygen-containing functional groups could introduce a pseudocapacitance reaction. Its large specific surface area and interconnecting network structure could shorten the ion/electron transfer length to reach high ion adsorption capacity and fast kinetic behavior. When used as a zinc-ion hybrid capacitor cathode material, it showed 9.9 kW kg-1 power density and 100 W h kg-1 energy density. Even at 5 A g-1, after 50 000 cycles, there was still 93% capacity retention. Systemic ex situ characterization and first-principles calculations indicated that the excellent electrochemical performance is attributed to the electric double layer capacitance (EDLC) - pseudocapacitance coupled mechanism via the introduction of an appropriate amount of oxygen-containing functional groups. This work provides a robust design for pore engineering and mechanistic insights into rapid zinc-ion storage in carbon materials.
Collapse
Affiliation(s)
- Xiaoyi Pan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Qian Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| | - Tongde Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tie Shu
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yousheng Tao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
2
|
Chong S, Yuan L, Zhou Q, Wang Y, Qiao S, Li T, Ma M, Yuan B, Liu Z. Bismuth Telluride Nanoplates Hierarchically Confined by Graphene and N-Doped C as Conversion-Alloying Anode Materials for Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303985. [PMID: 37442792 DOI: 10.1002/smll.202303985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Potassium-ion batteries (PIBs) have broad application prospects in the field of electric energy storage systems because of its abundant K reserves, and similar "rocking chair" operating principle as lithium-ion batteries (LIBs). Aiming to the large volume expansion and sluggish dynamic behavior of anode materials for storing large sized K-ion, bismuth telluride (Bi2 Te3 ) nanoplates hierarchically encapsulated by reduced graphene oxide (rGO), and nitrogen-doped carbon (NC) are constructed as anodes for PIBs. The resultant Bi2 Te3 @rGO@NC architecture features robust chemical bond of Bi─O─C, tightly physicochemical confinement effect, typical conductor property, and enhanced K-ion adsorption ability, thereby producing superior electrochemical kinetics and outstanding morphological and structural stability. It is visually elucidated via high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) that conversion-alloying dual-mechanism plays a significant role in K-ion storage, allowing 12 K-ion transport per formular unit employing Bi as redox site. Thus, the high first reversible specific capacity of 322.70 mAh g-1 at 50 mA g-1 , great rate capability and cyclic stability can be achieved for Bi2 Te3 @rGO@NC. This work lays the foundation for an in-depth understanding of conversion-alloying mechanism in potassium-ion storage.
Collapse
Affiliation(s)
- Shaokun Chong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, P. R. China
| | - Lingling Yuan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qianwen Zhou
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yikun Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Shuangyan Qiao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ting Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Meng Ma
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Bingyang Yuan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Gang H, Deng H, Yan L, Wu B, Alhassan SI, Cao Y, Wei D, Wang H. Surface redox pseudocapacitance boosting Fe/Fe 3C nanoparticles-encapsulated N-doped graphene-like carbon for high-performance capacitive deionization. J Colloid Interface Sci 2023; 638:252-262. [PMID: 36738548 DOI: 10.1016/j.jcis.2023.01.093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The practical application of carbon anode in capacitive deionization (CDI) is greatly hindered by their poor adsorption capacity and co-ion effect. Herein, an N-doped graphene-like carbon (NC) decorated with Fe/Fe3C nanoparticles composite (Fe/Fe3C@NC) with large specific surface area and plentiful porosity is fabricated via a facile and scalable method, namely sol-gel method combined with Fe-catalyzed carbonization. As expected, it exhibits superior CDI performance as a Cl-storage electrode, with Cl- adsorption capacity as high as 102.3 mg g-1 at 1000 mg L-1 Cl- concentration and 1.4 V voltage, and a stable capacity of 68.5 mg g-1 for 60 cycles in 500 mg L-1 Cl- concentration and 100 mA g-1 current density. More importantly, on the basis of electrochemical tests, ex-situ X-ray diffraction, ex-situ X-ray photoelectron spectroscopy (XPS), and XPS analysis with argon ion depth etching, it is revealed that the chlorine storage mechanism of the Fe/Fe3C@NC electrode is dominated by the surface-related redox pseudocapacitance behavior of Fe2+/Fe3+ couple occurring on or near the surface, enabling fast and reversible ion storage. This work proposes an economical and environmentally friendly general method for the design and development of high-performance Cl-storage electrodes for CDI, and offers an in-depth insight into the Cl- storage mechanism of Fe decorated carbon electrodes, further promoting the development of CDI technology.
Collapse
Affiliation(s)
- Haiyin Gang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- College of Engineering, Chemical and Environmental Engineering Department, University of Arizona, Tucson, USA
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|
4
|
Shi M, Li T, Shang H, Huang T, Miao Y, Zhang C, Qi J, Wei F, Xiao B, Xu H, Xue X, Sui Y. Electronic structure engineering on NiSe 2 micro-octahedra via nitrogen doping enabling long cycle life magnesium ion batteries. J Colloid Interface Sci 2023; 645:850-859. [PMID: 37178562 DOI: 10.1016/j.jcis.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Multivalent ion batteries have attracted great attention because of their abundant reserves, low cost and high safety. Among them, magnesium ion batteries (MIBs) have been regarded as a promising alternative for large-scale energy storage device owing to its high volumetric capacities and unfavorable dendrite formation. However, the strong interaction between Mg2+ and electrolyte as well as cathode material results in very slow insertion and diffusion kinetics. Therefore, it is highly necessary to develop high-performance cathode materials compatible with electrolyte for MIBs. Herein, the electronic structure of NiSe2 micro-octahedra was modulated by nitrogen doping (N-NiSe2) through hydrothermal method followed by a pyrolysis process and this N-NiSe2 micro-octahedra was used as cathode materials for MIBs. It is worth noting that N-NiSe2 micro-octahedra shows more redox active sites and faster Mg2+ diffusion kinetics compared with NiSe2 micro-octahedra without nitrogen doping. Moreover, the density functional theory (DFT) calculations indicated that the doping of nitrogen could improve the conductivity of active materials on the one hand, facilitating Mg2+ ion diffusion kinetics, and on the other hand, nitrogen dopant sites could provide more Mg2+ adsorption sites. As a result, the N-NiSe2 micro-octahedra cathode exhibits a high reversible discharge capacity of 169 mAh g-1 at the current density of 50 mA g-1, and a good cycling stability over 500 cycles with a maintained discharge capacity of 158.5 mAh g-1. This work provides a new idea to improve the electrochemical performance of cathode materials for MIBs by the introduction of heteroatom dopant.
Collapse
Affiliation(s)
- Meiyu Shi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Tianlin Li
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Han Shang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Tianlong Huang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Yidong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Chenchen Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Jiqiu Qi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Fuxiang Wei
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Bin Xiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Xiaolan Xue
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China.
| | - Yanwei Sui
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, PR China.
| |
Collapse
|
5
|
Ding Y, Qiao ZA. Carbon Surface Chemistry: New Insight into the Old Story. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206025. [PMID: 36127265 DOI: 10.1002/adma.202206025] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The enormous complexity of the carbon material family has provoked a phenomenological approach to develop its potential in different applications. Although the electronic, chemical, mechanical, and magnetic properties of carbon materials have been widely discussed based on defect control engineering, there is still a lack of fundamental understanding of the carbon surface chemistry, which leads to many controversial conclusions. Here, by analyzing various defects on carbon surface, some commonly neglected aspects and misunderstandings in this field are pointed out, clarifying how surface chemistry affects the chemical behaviors of carbon in some specific chemical reactions. With this full-scale consideration of the carbon surface chemistry, the behaviors of carbon materials with various functions can be well defined, which is indispensable for their scalable applications. Perspectives on future developments of carbon surface chemistry are also provided to enable practically accessible design of advanced carbon in those applications.
Collapse
Affiliation(s)
- Yuxiao Ding
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhen-An Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|