1
|
Li Y, Xia M, Zhou J, Hu L, Du Y. Recent advances in gold Janus nanomaterials: Preparation and application. Adv Colloid Interface Sci 2024; 334:103315. [PMID: 39454268 DOI: 10.1016/j.cis.2024.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/02/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Gold Janus nanomaterials have a tremendous significance for the novel bifunctional materials, significantly expanding the application scope of gold nanomaterials, especially Janus gold-thiol coordination polymer due to their exceptional biological characteristics, stability, plasmon effect, etc. The recent research on Janus gold nanoparticles and monolayer films of preparation and application has been summarized and in this review. To begin, we briefly introduce overview of Janus nanomaterials which received intense attention, outline current research trends, and detail the preparation and application of gold nanomaterials. Subsequently, we present comprehensively detailing fabrication strategies and applications of Janus gold nanoparticles. Additionally, we survey recent studies on the Janus gold nano-thickness films and point out the outstanding advantage of application on the tunable surface plasmon resonance, high sensitivity of surface-enhanced Raman scattering and electrical analysis fields. Finally, we discuss the emerging trends in Janus gold nanomaterials and address the associated challenges, thereby providing a comprehensive overview of this area of research.
Collapse
Affiliation(s)
- Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China.
| | - Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Jiahang Zhou
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Lingui Hu
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yixuan Du
- School of Materials Science & Engineering, Bayreuth Universität, Bayreuth, 95445, Germany.
| |
Collapse
|
2
|
Chen C, Zhang L, Wang N, Sun D, Yang Z. Janus Composite Particles and Interfacial Catalysis Thereby. Macromol Rapid Commun 2023; 44:e2300280. [PMID: 37335979 DOI: 10.1002/marc.202300280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Janus composite particles (JPs) with distinct compartmentalization of varied components thus performances and anisotropic shape display a variety of properties and have demonstrated great potentials in diversify practical applications. Especially, the catalytic JPs are advantageous for multi-phase catalysis with much easier separation of products and recycling the catalysts. In the first section of this review, typical methods to synthesize the JPs with varied morphologies are briefly surveyed in the category of polymeric, inorganic and polymer/inorganic composite. In the main section, recent progresses of the JPs in emulsion interfacial catalysis are summarized covering organic synthesis, hydrogenation, dye degradation, and environmental chemistry. The review will end by calling more efforts toward precision synthesis of catalytic JPs at large scale to meet the stringent requirements in practical applications such as catalytic diagnosis and therapy by the functional JPs.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na Wang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Guan M, Wang J, Wang K, Wang J, Devasenathipathy R, He S, Yu L, Zhang L, Xie H, Li Z, Lu G. Selective adsorption of cysteamine molecules on Au/TiO 2 boosts visible light-driven photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 633:1033-1041. [PMID: 36516679 DOI: 10.1016/j.jcis.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/24/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Photocatalytic evolution of hydrogen is becoming a research hotspot because it can help to produce clean energy and reduce environmental pollution. Titanium dioxide (TiO2) and its composites are photocatalysts that are widely used in hydrogen evolution because of their high abundance in nature, low price, and high photo/chemical stability. However, their catalytic performances still need to be further improved, particularly in the visible light spectrum. Herein, visible light-driven photocatalytic evolution of hydrogen on Au/TiO2 nanocomposite is enhanced ∼ 10 folds by selectively functionalizing the nanocomposite with cysteamine molecules. It is revealed that the amine group (-NH2) in cysteamine favors the transfer and separation of photo-generated hot carriers. The rate of hydrogen produced can be further tuned by varying the ionization of the functionalized molecules at different pH values. This work provides a simple, convenient, and effective method that can be used to improve the photocatalytic evolution of hydrogen. This method can also be used for many other nanocatalysts (e.g., Au-MoS2, Au-BiVO4) and catalytic reactions (e.g., carbon dioxide reduction, nitrogen reduction).
Collapse
Affiliation(s)
- Mengdan Guan
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jin Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Shunhao He
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Linrong Zhang
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Y2, 2nd Floor, Building 2, Xixi Legu Creative Pioneering Park, No. 712 Wen'er West Road, Xihu District, Hangzhou 310003, PR China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics, Institute of Advanced Materials, and School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China; National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
4
|
Zhang F, Yang Z, Yin T, Shen H, Liang W, Li X, Lin M, Zhang J, Dong Z. Study of Pickering emulsions stabilized by Janus magnetic nanosheets. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
The study of novel amphiphilic Janus-SiO2 nanoparticles for enhanced viscoelasticity of wormlike micelles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Vafaeezadeh M, Thiel WR. Task-Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206403. [PMID: 35670287 PMCID: PMC9804448 DOI: 10.1002/anie.202206403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 01/05/2023]
Abstract
Janus materials are anisotropic nano- and microarchitectures with two different faces consisting of distinguishable or opposite physicochemical properties. In parallel with the discovery of new methods for the fabrication of these materials, decisive progress has been made in their application, for example, in biological science, catalysis, pharmaceuticals, and, more recently, in battery technology. This Minireview systematically covers recent and significant achievements in the application of task-specific Janus nanomaterials as heterogeneous catalysts in various types of chemical reactions, including reduction, oxidative desulfurization and dye degradation, asymmetric catalysis, biomass transformation, cascade reactions, oxidation, transition-metal-catalyzed cross-coupling reactions, electro- and photocatalytic reactions, as well as gas-phase reactions. Finally, an outlook on possible future applications is given.
Collapse
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| | - Werner R. Thiel
- Fachbereich ChemieTechnische Universität KaiserslauternErwin-Schrödinger-Strasse 5467663KaiserslauternGermany
| |
Collapse
|
7
|
Li Z, Zhang C, Sheng H, Wang J, Zhu Y, Yu L, Wang J, Peng Q, Lu G. Molecular Cocatalyst of p-Mercaptophenylboronic Acid Boosts the Plasmon-Mediated Reduction of p-Nitrothiophenol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38302-38310. [PMID: 35943401 DOI: 10.1021/acsami.2c08327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Localized surface plasmon resonance (LSPR) has been demonstrated to be highly effective in the initialization or acceleration of chemical reactions because of its unique optical properties. However, because of the ultrashort lifetime (fs to ps) of plasmon-generated hot carriers, the potential of LSPR in photochemical reactions has not been fully exploited. Herein, we demonstrate an acceleration of the plasmon-mediated reduction of p-nitrothiophenol (PNTP) molecules on the surface of silver nanoparticles (AgNPs) with in situ Raman spectroscopy. p-Mercaptophenylboronic acid (PMPBA) molecules coadsorbed on AgNP surfaces act as a molecular cocatalyst in the plasmon-mediated reaction, resulting in a boosting of the PNTP reduction. This boosting is attributed to the improved transfer and separation of the plasmon-generated hot carriers at the interface of the AgNPs and coadsorbed PMPBA molecules. Our finding provides a highly simple, cost-effective, and highly effective strategy to promote plasmonic photochemistry by introducing a molecular cocatalyst, and this strategy can be extended to promote various plasmon-mediated reactions.
Collapse
Affiliation(s)
- Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jin Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
8
|
Vafaeezadeh M, Thiel WR. Task‐Specific Janus Materials in Heterogeneous Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Majid Vafaeezadeh
- Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| | - Werner R. Thiel
- Kaiserslautern University of Technology: Technische Universitat Kaiserslautern Chemistry Erwin-Schrödinger-Str. 54 67663 Kaiserslautern GERMANY
| |
Collapse
|
9
|
Chen Y, Zhang L, Wang J, Sheng H, Wang K, Wang J, He S, Yu L, Lu G. Preparation of Janus nanosheets composed of gold/palladium nanoparticles and reduced graphene oxide for highly efficient emulsion catalysis. J Colloid Interface Sci 2022; 625:59-69. [DOI: 10.1016/j.jcis.2022.05.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/31/2022]
|
10
|
Qiao Y, Ma X, Liu Z, Manno MA, Keim NC, Cheng X. Tuning the rheology and microstructure of particle-laden fluid interfaces with Janus particles. J Colloid Interface Sci 2022; 618:241-247. [PMID: 35339960 DOI: 10.1016/j.jcis.2022.03.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS Particle-laden fluid interfaces are the central component of many natural and engineering systems. Understanding the mechanical properties and improving the stability of such interfaces are of great practical importance. Janus particles, a special class of heterogeneous colloids, might be used as an effective surface-active agent to control the assembly and interfacial rheology of particle-laden fluid interfaces. EXPERIMENTS Using a custom-built interfacial stress rheometer, we explore the effect of Janus particle additives on the interfacial rheology and microscopic structure of particle-laden fluid interfaces. FINDINGS We find that the addition of a small amount of platinum-polystyrene (Pt-PS) Janus particles within a monolayer of PS colloids (1:40 number ratio) can lead to more than an order-of-magnitude increase in surface moduli with enhanced elasticity, which improves the stability of the interface. This drastic change in interfacial rheology is associated with the formation of local particle clusters surrounding each Janus particle. We further explain the origin of local particle clusters by considering the interparticle interactions at the interface. Our experiments reveal the effect of local particle structures on the macroscopic rheological behaviors of particle monolayers and demonstrate a new way to tune the microstructure and mechanical properties of particle-laden fluid interfaces.
Collapse
Affiliation(s)
- Yiming Qiao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Manno
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathan C Keim
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA.
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Wang G, Wang K, Zhang C, Zhu Y, Jiang X, Li Z, Yin C, Ma H, Liu J, Huang X, Lu G. Modulating the plasmon-mediated silver oxidation using thiophenol molecules as monitored by in situ SERS spectroscopy. Phys Chem Chem Phys 2021; 23:26385-26391. [PMID: 34792049 DOI: 10.1039/d1cp03864h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective charge separation is essential in plasmon-mediated photochemistry and is usually achieved by constructing plasmon-semiconductor interfaces, which is usually challenging. In this work, by monitoring the plasmon-mediated silver oxidation with in situ Raman spectroscopy, we demonstrate that the adsorbed thiophenol molecules could modulate the rate of photochemical reactions by tuning the charge separation at the plasmon-molecule interfaces. It is found that the thiophenol molecules with strong electron-withdrawing or donating functional groups could accelerate or decelerate the rate of plasmon-mediated silver oxidation, respectively. Owing to the easy tuning of the electronic structures of organic molecules via substitution, our method provides a versatile and convenient approach for the fine modulation of plasmon-mediated photochemical reactions.
Collapse
Affiliation(s)
- Guilin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Kai Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Chengrong Yin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. .,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Wang Y, Liang Y, Sheng H, Wang J, Wang J, He S, Guan M, Chen Y, Lu G. Monitoring the Thiol/Thiophenol Molecule-Modulated Plasmon-Mediated Silver Oxidation with Dark-Field Optical Microscopy. Chemistry 2021; 28:e202103709. [PMID: 34812569 DOI: 10.1002/chem.202103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Abstract
Surface plasmon can trigger or accelerate many photochemical reactions, especially useful in energy and environmental industries. Recently, molecular adsorption has proven effective in modulating plasmon-mediated photochemistry, however the realized chemical reactions are limited and the underlying mechanism is still unclear. Herein, by using in situ dark-field optical microscopy, the plasmon-mediated oxidative etching of silver nanoparticles (Ag NPs), a typical hot-hole-driven reaction, is monitored continuously and quantitatively. The presence of thiol or thiophenol molecules is found essential in the silver oxidation. In addition, the rate of silver oxidation is modulated by the choice of different thiol or thiophenol molecules. Compared with the molecules having electron donating groups, the ones having electron accepting groups accelerate the silver oxidation dramatically. The thiol/thiophenol modulation is attributed to the modulation of the charge separation between the Ag NPs and the adsorbed thiol or thiophenol molecules. This work demonstrates the great potential of molecular adsorption in modulating the plasmon-mediated photochemistry, which will pave a new way for developing highly efficient plasmonic photocatalysts.
Collapse
Affiliation(s)
- Yaoli Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Shunhao He
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
13
|
Yi R, Wang J, Yue X, Liang Y, Li Z, Sheng H, Guan M, Zhu Y, Sun Q, Wang L, Huang X, Lu G. Synthesis of Thin Bi 9 O 7.5 S 6 Nanosheets for Improved Photodetection in a Wide Wavelength Range. Chem Asian J 2021; 16:3748-3753. [PMID: 34549536 DOI: 10.1002/asia.202100963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Indexed: 12/30/2022]
Abstract
Bismuth-based compounds possess layered structures with a variety of stacking modes, endowing the compounds with diverse properties. As one type of bismuth oxysulfides, Bi9 O7.5 S6 nanocrystals has great applications in photodetection; however, the responsivity of bulky Bi9 O7.5 S6 is limited due to the poor charge separation. Herein, single-crystalline Bi9 O7.5 S6 thin nanosheets are successfully synthesized by using a solvothermal method. The thickness of the obtained Bi9 O7.5 S6 nanosheets is down to 15 nm and can be easily tuned by varying the reaction period. Moreover, the Bi9 O7.5 S6 nanosheets show strong light absorption in the visible and near infrared range, making it a promising candidate in optoelectronics. As a demonstration, the thin Bi9 O7.5 S6 nanosheets are used as active layer in an optoelectronic device, which exhibits sensitive photoelectric response to light in a wide range of 400-800 nm. The responsivity of the device reaches up to 1140 μA W-1 , and the performance of the device is stable after long-period illumination. This work demonstrates a great potential of the thin Bi9 O7.5 S6 nanosheets in optoelectronic devices, and these nanosheets may also be extended to various optoelectronic applications.
Collapse
Affiliation(s)
- Ronghua Yi
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiaoping Yue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Qizeng Sun
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Li Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|