1
|
Nakakuki T, Toyonari M, Aso K, Murayama K, Asanuma H, de Greef TFA. DNA Reaction System That Acquires Classical Conditioning. ACS Synth Biol 2024; 13:521-529. [PMID: 38279958 PMCID: PMC10877613 DOI: 10.1021/acssynbio.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
Biochemical reaction networks can exhibit plastic adaptation to alter their functions in response to environmental changes. This capability is derived from the structure and dynamics of the reaction networks and the functionality of the biomolecule. This plastic adaptation in biochemical reaction systems is essentially related to memory and learning capabilities, which have been studied in DNA computing applications for the past decade. However, designing DNA reaction systems with memory and learning capabilities using the dynamic properties of biochemical reactions remains challenging. In this study, we propose a basic DNA reaction system design that acquires classical conditioning, a phenomenon underlying memory and learning, as a typical learning task. Our design is based on a simple mechanism of five DNA strand displacement reactions and two degradative reactions. The proposed DNA circuit can acquire or lose a new function under specific conditions, depending on the input history formed by repetitive stimuli, by exploiting the dynamic properties of biochemical reactions induced by different input timings.
Collapse
Affiliation(s)
- Takashi Nakakuki
- Department
of Intelligent and Control Systems, Faculty of Computer Science and
Systems Engineering, Kyushu Institute of
Technology 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
| | - Masato Toyonari
- Department
of Intelligent and Control Systems, Faculty of Computer Science and
Systems Engineering, Kyushu Institute of
Technology 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
| | - Kaori Aso
- Department
of Intelligent and Control Systems, Faculty of Computer Science and
Systems Engineering, Kyushu Institute of
Technology 680-4 Kawazu, Iizuka, Fukuoka 8208502, Japan
| | - Keiji Murayama
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 4648603, Japan
| | - Hiroyuki Asanuma
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 4648603, Japan
| | - Tom F. A. de Greef
- Laboratory
of Chemical Biology and Institute for Complex Molecular Systems and
Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, De Zaale, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
2
|
Du R, Teng Q, Xu S, Jiang M, Irmisch P, Wang ZG. Self-Assembly of Designed Peptides with DNA to Accelerate the DNA Strand Displacement Process for Dynamic Regulation of DNAzymes. ACS NANO 2023; 17:24753-24762. [PMID: 38061002 DOI: 10.1021/acsnano.3c05124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Toehold-mediated DNA strand displacement (TMSD) is a powerful tool for controlling DNA-based molecular reactions and devices. However, the slow kinetics of TMSD reactions often limit their efficiency and practical applications. Inspired by the chemical structures of natural DNA-operating enzymes (e.g., helicase), we designed lysine-rich peptides to self-assemble with DNA-based systems. Our approach allows for accelerating the TMSD reactions, even during multiple displacement events, enhancing their overall efficiency and utility. We found that the acceleration is dependent on the peptide's sequence, length, and concentration as well as the length of the DNA toehold domain. Molecular dynamics simulations revealed that the peptides promote toehold binding between the double-stranded target and the single-stranded invader, thereby facilitating strand displacement. Furthermore, we integrated our approach into a horseradish peroxidase-mimicking DNAzyme, enabling the dynamic modulation of enzymatic functions on and off. We anticipate that the established acceleration of strand displacement reactions and the modulation of enzymatic activities offer enhanced functionality and control in the design of programmable DNA-based nanodevices.
Collapse
Affiliation(s)
- Ruikai Du
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiao Teng
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shichao Xu
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Minquan Jiang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Patrick Irmisch
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Zhen-Gang Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Wang Y, Sun C, Wang Z, Sun J. Projection Synchronization of Three-Dimensional Chaotic Systems With Active Control Based on DNA Strand Displacement. IEEE Trans Nanobioscience 2023; 22:836-844. [PMID: 37022384 DOI: 10.1109/tnb.2023.3241652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The emergence of biological computing based on DNA strand displacement has allowed chaotic systems to have more abundant dynamic behaviors. So far, the synchronization of chaotic systems based on DNA strand displacement has been mainly realized by coupling control and PID control. In this paper, the projection synchronization of chaotic systems based on DNA strand displacement is achieved using an active control method. First, some basic catalytic reaction modules and annihilation reaction modules are constructed based on the theoretical knowledge of DNA strand displacement. Second, the chaotic system and the controller are designed according to the above mentioned modules. On the basis of chaotic dynamics, the complex dynamic behavior of the system is verified by the lyapunov exponents spectrum and the bifurcation diagram. Third, the active controller based on DNA strand displacement is used to realize the projection synchronization between the drive system and the response system, where the projection can be adjusted within a certain range by changing the value of the scale factor. The result of projection synchronization of chaotic system is more flexible, which is realized by active controller. Our control method provides an efficient way to achieve synchronization of chaotic systems based on DNA strand displacement. The designed projection synchronization is verified to have excellent timeliness and robustness by the results Visual DSD simulation.
Collapse
|
4
|
Zeng C, Liu X, Wang B, Qin R, Zhang Q. Multifunctional Exo III-assisted scalability strategy for constructing DNA molecular logic circuits. Analyst 2023; 148:1954-1960. [PMID: 36994799 DOI: 10.1039/d3an00086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The construction of logic circuits is critical to DNA computing. Simple and effective scalability methods have been the focus of attention in various fields related to constructing logic circuits. We propose a double-stranded separation (DSS) strategy to facilitate the construction of complex circuits. The strategy combines toehold-mediated strand displacement with exonuclease III (Exo III), which is a multifunctional nuclease. Exo III can quickly recognize an apurinic/apyrimidinic (AP) site. DNA oligos with an AP site can generate an output signal by the strand displacement reaction. However, in contrast to traditional strand displacement reactions, the double-stranded waste from the strand displacement can be further hydrolysed by the endonuclease function of Exo III, thus generating an additional output signal. The DSS strategy allows for the effective scalability of molecular logic circuits, enabling multiple logic computing capabilities simultaneously. In addition, we succeeded in constructing a logic circuit with dual logic functions that provides foundations for more complex circuits in the future and has a broad scope for development in logic computing, biosensing, and nanomachines.
Collapse
Affiliation(s)
- Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Rui Qin
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| |
Collapse
|
5
|
Programming DNA Reaction Networks Using Allosteric DNA Hairpins. Biomolecules 2023; 13:biom13030481. [PMID: 36979416 PMCID: PMC10046357 DOI: 10.3390/biom13030481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The construction of DNA reaction networks with complex functions using various methods has been an important research topic in recent years. Whether the DNA reaction network can perform complex tasks and be recycled directly affects the performance of the reaction network. Therefore, it is very important to design and implement a DNA reaction network capable of multiple tasks and reversible regulation. In this paper, the hairpin allosteric method was used to complete the assembly task of different functional nucleic acids. In addition, information conversion of the network was realized. In this network, multiple hairpins were assembled into nucleic acid structures with different functions to achieve different output information through the cyclic use of trigger strands. A method of single-input dual-output information conversion was proposed. Finally, the network with signal amplification and reversible regulation was constructed. In this study, the reversible regulation of different functional nucleic acids in the same network was realized, which shows the potential of this network in terms of programmability and provides new ideas for constructing complex and multifunctional DNA reaction networks.
Collapse
|
6
|
Zhao S, Liu Y, Zhang X, Qin R, Wang B, Zhang Q. Mapping Temporally Ordered Inputs to Binary Message Outputs with a DNA Temporal Logic Circuit. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:903. [PMID: 36903782 PMCID: PMC10005157 DOI: 10.3390/nano13050903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Molecular circuits and devices with temporal signal processing capability are of great significance for the analysis of complex biological processes. Mapping temporal inputs to binary messages is a process of history-dependent signal responses, which can help understand the signal-processing behavior of organisms. Here, we propose a DNA temporal logic circuit based on DNA strand displacement reactions, which can map temporally ordered inputs to corresponding binary message outputs. The presence or absence of the output signal is determined by the type of substrate reaction with the input so that different orders of inputs correspond to different binary outputs. We demonstrate that a circuit can be generalized to more complex temporal logic circuits by increasing or decreasing the number of substrates or inputs. We also show that our circuit had excellent responsiveness to temporally ordered inputs, flexibility, and expansibility in the case of symmetrically encrypted communications. We envision that our scheme can provide some new ideas for future molecular encryption, information processing, and neural networks.
Collapse
Affiliation(s)
- Shuai Zhao
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaokang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Rui Qin
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| |
Collapse
|