1
|
Wei Y, Gao F, Yuan J, Xie H, Xiao D, Zhang H, Wang Y, Ren W. Computational screening of single-atom transition metals on boron-rich boron nitride nanosheets for efficient hydrogen evolution catalysis in all pH range. J Chem Phys 2024; 161:144108. [PMID: 39382134 DOI: 10.1063/5.0226662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Low-cost and high-efficiency catalysts are of crucial importance for the electrocatalytic hydrogen evolution reaction (HER). Two-dimensional (2D) boron nitride (B-N) compounds formed by the combination of boron and nitrogen atoms of group III and V elements are promising candidates for electrocatalytic HER due to their significant electronic properties. Hence, an electrocatalyst is computer-aided designed with isolated single atoms of 3d, 4d, and 5d transition metals supported on 2D B-N (B2N, B5N3, and B7N5) monolayers to fabricate single-atom catalysts (SACs) with an excellent HER performance. Moreover, pH modulations are considered to improve the HER activity theoretically based on first-principles calculation. Our results indicate that B-N compounds surface doping with transition metal atoms can effectively enhance the HER catalytic performance over a wide range of pH. Among all SACs studied, Co-, Ti-, V-, Nb-, Ru-, Tc-, Zr-, and Os-embedded B2N, Sc-, Cr-, Mn-, Ti-, and Y-embedded B5N3, and Sc- and Mn-embedded B7N5 have excellent catalytic activity under acidic conditions, while Mo-, Ir-, Re-, Ta-, and W-embedded B2N and Ti- and Fe-embedded B7N5 show high catalytic activity under alkaline conditions. Interestingly, Hf@B2N and V@B5N3 systems exhibit promising catalytic activity under acidic, neutral, and alkaline conditions. Our work offers cost-effective candidates with a wide pH range HER performance for exploring ideal electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Wei
- Department of Physics, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Feng Gao
- Academy of Edge Intelligence Hangzhou City University, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Jiantao Yuan
- Academy of Edge Intelligence Hangzhou City University, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Hao Xie
- Academy of Edge Intelligence Hangzhou City University, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Duo Xiao
- Academy of Edge Intelligence Hangzhou City University, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Hui Zhang
- Department of Physics, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Yin Wang
- Department of Physics, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- Department of Physics, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Rahimi R, Solimannejad M. Exploring the adsorption behavior of O-containing VOCs in human breath on a B 2N monolayer using DFT simulations. Phys Chem Chem Phys 2024; 26:25567-25580. [PMID: 39329395 DOI: 10.1039/d4cp01977f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We conducted a DFT study of the B2N monolayer pairing with the O-containing volatile organic compounds (O-containing VOCs) in exhaled breath, viz. acetone, ethanol, methanol, and formaldehyde. The most stable configuration of O-containing VOCs on the B2N sheet is also considered and compared with the adsorbed H2O on the desired monolayer. The adsorption energy when both water and O-containing VOC molecules are present shows that the O-containing VOC molecules can be effectively adsorbed on the surface of B2N while maintaining stability in the presence of water molecules. The adsorption energy values for the most stable acetone/B2N, ethanol/B2N, methanol/B2N, formaldehyde/B2N, and H2O/B2N complexes are -0.50, -0.61, -0.56, -0.87, and -0.41 eV, respectively. The computed recovery time at 300 K for the desired complexes without radiation ranges from 2.6 × 10-4 to 440 seconds. Using non-equilibrium Green's function, the electrical current is calculated separately as a function of applied bias voltage of 0-2 volts for each O-containing VOC. The percentage increase in the band gap of the desired B2N sheet is 5, 19, 25, and 35% upon interaction with methanol, formaldehyde, acetone, and ethanol, respectively. These findings highlight the notable sensing capabilities of the desired B2N sheet when compared to other sensors such as the BC6N sheet, pristine MoSe2 monolayer, and phosphorene. Moreover, these findings may have implications for the potential use of B2N nanosheets for the detection of O-containing VOCs in human breath, enabling early disease diagnosis.
Collapse
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 3848177584, Iran.
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 3848177584, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, Arak 3848177584, Iran.
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 3848177584, Iran
| |
Collapse
|
3
|
Qiu Z, Guo J, Wang Q, Wang H, Tan X. Reversible hydrogen storage and release mechanism of a B 2N monolayer: a first-principles insight. Phys Chem Chem Phys 2024; 26:22240-22251. [PMID: 39129584 DOI: 10.1039/d4cp02159b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
It was found the physical adsorption could be an efficient strategy for high capacity, high efficiency and high safety in hydrogen storage. In this research, a systematic investigation into the potential of the B2N monolayer as an excellent physical adsorption hydrogen storage material is conducted by utilizing the first-principles calculation method. The findings of the investigation demonstrate that the B2N monolayer has a planar lattice and excellent structural stability. It is possible for H2 molecules to adsorb onto the B2N monolayer spontaneously. Both the individual adsorption and saturation adsorption corresponded to average adsorption energies ranging from -0.221 to -0.194 eV, fulfilling the physical adsorption criteria. In the case of saturation adsorption, a 1 × 2 × 1 B2N supercell can store a total of 24 H2 molecules, with the hydrogen gravimetric density up to 14.511 wt% and volumetric density up to 138 g L-1. A semi-empirical calculation method is used to research the performance of the system in terms of adsorption and desorption with actual temperature and pressure conditions. Under the actual conditions with adsorption carried out at 30 atm/233 K and desorption carried out at 3 atm/358 K, the maximal reversible hydrogen storage capacity of the hydrogen storage system based on the B2N monolayer can still reach 12.157 wt%, which is superior to that of many other boron-nitrogen compounds and metal-free functionalized hydrogen storage materials. The findings of this work indicate that the pristine B2N monolayer is one of the promising physical adsorption materials which could achieve excellent reversible hydrogen storage under defined conditions.
Collapse
Affiliation(s)
- Zonggang Qiu
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Jiyuan Guo
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Qun Wang
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Han Wang
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Xiangxiang Tan
- School of Science, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| |
Collapse
|
4
|
Dong X, Hou Y, Deng C, Wu J, Fu H. Bi 3O 2.5Se 2: a two-dimensional high-mobility polar semiconductor with large interlayer and interfacial charge transfer. NANOSCALE 2024; 16:14766-14774. [PMID: 38973699 DOI: 10.1039/d4nr01758g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically <1.5 eV). Here, using the first-principles calculations, we systematically investigated the polarity of few-layer Bi3O2.5Se2 semiconductors with ultrahigh predicted room-temperature carrier mobility (1790 cm2 V-1 s-1 for the monolayer). Thanks to its unique non-neutral layered structure, few-layer Bi3O2.5Se2 contributes to a substantial interlayer charge transfer (>0.5 e-) and almost the highest electrostatic potential difference (ΔΦ) of ∼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([Bi2O2.5]+ or [BiSe2]-) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar Bi3O2.5Se2 as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (∼1014 cm-2) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors.
Collapse
Affiliation(s)
- Xinyue Dong
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Yameng Hou
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Chaoyue Deng
- Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, P. R. China.
| | - Jinxiong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensor Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Huixia Fu
- Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, P. R. China.
- Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
5
|
Xu Y, Li D, Sun H, Xu H, Li P. Comprehensive understanding of electron mobility and superior performance in sub-10 nm DG ML tetrahex-GeC 2 n-type MOSFETs. Phys Chem Chem Phys 2024; 26:4284-4297. [PMID: 38231547 DOI: 10.1039/d3cp05327j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In this study, we have investigated the electron mobility of monolayered (ML) tetrahex-GeC2 by solving the linearized Boltzmann transport equation (BTE) with the normalized full-band relaxation time approximation (RTA) using density functional theory (DFT). Contrary to what the deformation potential theory (DPT) suggested, the ZA acoustic mode was determined to be the most restrictive for electron mobility, not the LA mode. The electron mobility at 300 K is 803 cm2 (V s)-1, exceeding the 400 cm2 (V s)-1 of MoS2 which was calculated using the same method and measured experimentally. The ab initio quantum transport simulations were performed to assess the performance limits of sub-10 nm DG ML tetrahex-GeC2 n-type MOSFETs, including gate lengths (Lg) of 3 nm, 5 nm, 7 nm, and 9 nm, with the underlap (UL) effect considered for the first two. For both high-performance (HP) and low-power (LP) applications, their on-state currents (Ion) can meet the requirements of similar nodes in the ITRS 2013. In particular, the Ion is more remarkable for HP applications than that of the extensively studied MoS2. For LP applications, the Ion values at Lg of 7 and 9 nm surpass those of arsenene, known for having the largest Ion among 2D semiconductors. Subthreshold swings (SSs) as low as 69/53 mV dec-1 at an Lg of 9 nm were observed for HP/LP applications, and 73 mV dec-1 at an Lg of 5 nm for LP applications, indicating the excellent gate control capability. Moreover, the delay time τ and power dissipation (PDP) at Lg values of 3 nm, 5 nm, 7 nm, and 9 nm are all below the upper limits of the ITRS 2013 HP/LP proximity nodes and are comparable to or lower than those of typical 2D semiconductors. The sub-10 nm DG ML tetrahex-GeC2 n-type MOSFETs can be down-scaled to 9 nm and 5 nm for HP and LP applications, respectively, displaying desirable Ion, delay time τ, and PDP in the ballistic limit, making them a potential choice for sub-10 nm transistors.
Collapse
Affiliation(s)
- Yuehua Xu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Daqing Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - He Sun
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Haowen Xu
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, Jiangsu, China.
| | - Pengfei Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
6
|
Liu F, Chen X, Huang Y, Shu C, Li N, Xiao B, Wang L. Prediction of a planar B xP monolayer with inherent metallicity and its potential as an anode material for Na and K-ion batteries: a first-principles study. Phys Chem Chem Phys 2023; 25:27994-28005. [PMID: 37819217 DOI: 10.1039/d3cp03438k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Borophene, the lightest two-dimensional material, exhibits exceptional storage capacity as an anode material for sodium-ion batteries (NIBs) and potassium-ion batteries (PIBs). However, the pronounced surface activity gives rise to strong interfacial bonding between borophene and the metal substrate it grows on. Incorporation of heterogeneous atoms capable of forming strong bonds with boron to increase borophene stability while preserving its intrinsic metallic conductivity and high theoretical capacity remains a great challenge. In this study, a particle swarm optimization (PSO) method was employed to determine several new two-dimensional monolayer boron phosphides (BxP, x = 3-6) with rich boron components. The obtained BxP has great potential to be used as an anode material for sodium-ion batteries/potassium-ion batteries (SIBs/PIBs), according to DFT calculations. BxP demonstrates remarkable stability compared with borophene which ensures their feasibility of experimental synthesis. Moreover, B5P and B6P exhibit high electronic conductivity and ionic conductivity, with migration energy barriers of 0.20 and 0.21 eV for Na ions and 0.07 eV for K ions. Moreover, the average open circuit voltage falls within a favorable range of 0.25-0.73 V, which results in a high storage capacity of 1119-2103 mA h g-1 for SIBs and 631-839 mA h g-1 for PIBs. This study paves the way for exploring boron-rich 2D electrode materials for energy applications and provides valuable insights into the functionalization and stabilization of borophene.
Collapse
Affiliation(s)
- Fang Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Xianfei Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
| | - Chaozhu Shu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China.
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Na Li
- College of Energy Resources, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Lianli Wang
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
7
|
Zhou X, Liu F, Chen X, Huang Y, Zhang P, Xiao B, Zhang W, Wang L. First principles investigation on Na-ion storage in two-dimensional boron-rich B 2N, B 3N, and B 5N. Phys Chem Chem Phys 2023; 25:1123-1132. [PMID: 36514966 DOI: 10.1039/d2cp03662b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Na-ion batteries (SIBs) are emerging as a promising alternative to Li-ion batteries for large-scale energy storage in light of abundant Na resources and their low cost. Development of appropriate electrode materials that can conquer some critical issues such as low theoretical storage capacity and sluggish redox kinetics resulting from the larger radius of Na is urgently needed for their practical applications. In this work, boron-rich 2D BxN (x = 2, 3, and 5) has been explored as promising anode materials for high-performance SIBs based on density functional theory calculations. BxN electrodes exhibit moderate affinity toward Na-ions with adsorption energies of -0.41 to -1.21 eV, which allows stable Na-ion intercalation without the formation of metal dendrites. Moreover, both B3N and B5N deliver low diffusion barriers (0.28 and 0.08 eV) for Na-ion migration, guaranteeing a high charging/discharging rate. More importantly, these BxN anodes exhibit not only a remarkably high theoretical capacity of 1129-1313 mA h g-1 but also a low open-circuit voltage (0.45-0.87 V), which is important to achieve high energy density. AIMD simulations have confirmed the excellent cyclability of BxN electrodes during reversible lithiation/delithiation. These results suggested that the BxN electrode could be used as a new lightweight SIB anode with high capacity, cyclability, and desired rate performance.
Collapse
Affiliation(s)
- Xingyi Zhou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Fang Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Xianfei Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. .,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Yi Huang
- College of Environment and Ecology, Chengdu University of Technology, Chengdu 610059, China. .,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Peicong Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. .,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Wentao Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. .,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu University of Technology, Chengdu 610059, China
| | - Lianli Wang
- School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
8
|
Yang Y, Li F. 2D boron-nitride featuring B4 tetrahedros: An efficient photocatalyst for water splitting. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|