1
|
Banerjee S, Chowdhury D, Chakraborty S, Haldar S. Force-regulated chaperone activity of BiP/ERdj3 is opposite to their homologs DnaK/DnaJ. Protein Sci 2024; 33:e5068. [PMID: 38864739 PMCID: PMC11168073 DOI: 10.1002/pro.5068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/13/2024]
Abstract
Polypeptide chains experience mechanical tension while translocating through cellular tunnels, which are subsequently folded by molecular chaperones. However, interactions between tunnel-associated chaperones and these emerging polypeptides under force is not completely understood. Our investigation focused on mechanical chaperone activity of two tunnel-associated chaperones, BiP and ERdj3 both with and without mechanical constraints and comparing them with their cytoplasmic homologs: DnaK and DnaJ. While BiP/ERdj3 have been observed to exhibit robust foldase activity under force, DnaK/DnaJ showed holdase function. Importantly, the tunnel-associated chaperones (BiP/ERdj3) transitioned to a holdase state in the absence of force, indicating a force-dependent chaperone behavior. This chaperone-driven folding event in the tunnel generated an additional mechanical energy of up to 54 zJ, potentially aiding protein translocation. Our findings align with strain theory, where chaperones with higher intrinsic deformability act as mechanical foldases (BiP, ERdj3), while those with lower deformability serve as holdases (DnaK and DnaJ). This study thus elucidates the differential mechanically regulated chaperoning activity and introduces a novel perspective on co-translocational protein folding.
Collapse
Affiliation(s)
- Souradeep Banerjee
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Debojyoti Chowdhury
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
| | - Soham Chakraborty
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
| | - Shubhasis Haldar
- Department of BiologyTrivedi School of Biosciences, Ashoka UniversitySonepatHaryanaIndia
- Department of Chemical and Biological SciencesS.N. Bose National Center for Basic SciencesKolkataWest BengalIndia
- Technical Research Centre, S.N. Bose National Centre for Basic SciencesKolkataWest BengalIndia
| |
Collapse
|
2
|
Chaudhuri D, Chowdhury D, Chakraborty S, Bhatt M, Chowdhury R, Dutta A, Mistry A, Haldar S. Structurally different chemical chaperones show similar mechanical roles with independent molecular mechanisms. NANOSCALE 2024; 16:2540-2551. [PMID: 38214221 DOI: 10.1039/d3nr00398a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Osmolytes are well known to protect the protein structure against different chemical and physical denaturants. Since their actions with protein surfaces are mechanistically complicated and context dependent, the underlying molecular mechanism is not fully understood. Here, we combined single-molecule magnetic tweezers and molecular dynamics (MD) simulation to explore the mechanical role of osmolytes from two different classes, trimethylamine N-oxide (TMAO) and trehalose, as mechanical stabilizers of protein structure. We observed that these osmolytes increase the protein L mechanical stability by decreasing unfolding kinetics while accelerating the refolding kinetics under force, eventually shifting the energy landscape toward the folded state. These osmolytes mechanically stabilize the protein L and plausibly guide them to more thermodynamically robust states. Finally, we observed that osmolyte-modulated protein folding increases mechanical work output up to twofold, allowing the protein to fold under a higher force regime and providing a significant implication for folding-induced structural stability in proteins.
Collapse
Affiliation(s)
- Deep Chaudhuri
- Department of Chemistry, Ashoka University, Sonepat, Haryana, India.
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Madhu Bhatt
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Rudranil Chowdhury
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Aakashdeep Dutta
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Ayush Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| | - Shubhasis Haldar
- Department of Chemistry, Ashoka University, Sonepat, Haryana, India.
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal, India
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana, India
| |
Collapse
|
3
|
Chakraborty S, Haldar S. Single-molecule covalent magnetic tweezers. Trends Biochem Sci 2023; 48:740-741. [PMID: 37246021 DOI: 10.1016/j.tibs.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India; Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
4
|
Tong D, Soley N, Kolasangiani R, Schwartz MA, Bidone TC. Integrin α IIbβ 3 intermediates: From molecular dynamics to adhesion assembly. Biophys J 2023; 122:533-543. [PMID: 36566352 PMCID: PMC9941721 DOI: 10.1016/j.bpj.2022.12.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
The platelet integrin αIIbβ3 undergoes long-range conformational transitions associated with its functional conversion from inactive (low-affinity) to active (high-affinity) during hemostasis. Although new conformations that are intermediate between the well-characterized bent and extended states have been identified, their molecular dynamic properties and functions in the assembly of adhesions remain largely unexplored. In this study, we evaluated the properties of intermediate conformations of integrin αIIbβ3 and characterized their effects on the assembly of adhesions by combining all-atom simulations, principal component analysis, and mesoscale modeling. Our results show that in the low-affinity, bent conformation, the integrin ectodomain tends to pivot around the legs; in intermediate conformations, the headpiece becomes partially extended, away from the lower legs. In the fully open, active state, αIIbβ3 is flexible, and the motions between headpiece and lower legs are accompanied by fluctuations of the transmembrane helices. At the mesoscale, bent integrins form only unstable adhesions, but intermediate or open conformations stabilize the adhesions. These studies reveal a mechanism by which small variations in ligand binding affinity and enhancement of the ligand-bound lifetime in the presence of actin retrograde flow stabilize αIIbβ3 integrin adhesions.
Collapse
Affiliation(s)
- Dudu Tong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Nidhi Soley
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Reza Kolasangiani
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology), Yale University, New Haven, Connecticut; Department of Cell Biology, Yale University, New Haven, Connecticut; Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, Connecticut
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah; Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, Utah; Department of Biochemistry, University of Utah, Salt Lake City, Utah; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah.
| |
Collapse
|