1
|
Shi Y, Wang L, Li L, Feng C, Cao Y. Innovative Progress of LSPR-Based Dark-Field Scattering Spectral Imaging in the Biomedical Assay at the Single-Particle Level. ChemistryOpen 2024:e202400017. [PMID: 39727228 DOI: 10.1002/open.202400017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/16/2024] [Indexed: 12/28/2024] Open
Abstract
The growing demand for detection and sensing in the biomedical field is placing higher demands on technology. In clinical testing, it is expected to be able to realize both rapid large-field imaging and analysis of single particles (or single molecules or single cells), and it is expected to be able to grasp both the unique individuality of single particles in time and space during the complex reaction process, as well as the regular correlation between single particles in the same population distribution. Supported and promoted by the theory of localized surface plasmon resonance (LSPR), dark-field microscopy, as a single-particle optical imaging technique with a very high signal-to-noise ratio, provides a powerful new means to address the above clinical detection needs. This review will focus on the innovative applications of dark-field microscopy in biomedical-related assays in the past five years, introducing the basic principles and listing the impressing works. We also summarize how dark-field microscopy has been combined with other techniques, including surface-enhanced Raman scattering, fluorescence, colorimetry, electrochemistry, etc., to witness the joint progress and promotion of detection methods in the future. It also provides an outlook on the current challenges and future trends in this field.
Collapse
Affiliation(s)
- Yang Shi
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Lixiang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| | - Lingling Li
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Chen Feng
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, 211166, PR China
| |
Collapse
|
2
|
Ma F, Zhao Z, Huang J, Xiong Q, Xu S, Lin Z. Hybridization chain reaction assisted multicolor immunosensor for sensitively detection of human chorionic gonadotropin. Talanta 2024; 270:125578. [PMID: 38150971 DOI: 10.1016/j.talanta.2023.125578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
The level of human chorionic gonadotropin (HCG) is an important indicator for early pregnancy, pregnancy-related diseases trophoblastic diseases and even cancer diagnosis. Therefore, sensitive detection of HCG has crucial significance in clinical, especially in gynaecology and obstetrics. Herein, a hybridization chain reaction (HCR) assisted multicolor immunosensor have been developed for HCG analysis. The proposed method introduced HCR after the immunoreaction between antibody and HCG protein, and produced long double strand DNA (dsDNA) that contain biotin sites. The streptavidin-horseradish peroxidase was linked on the dsDNA by the interaction between biotin and streptavidin, and can further mediated gold nanobipyramids (Au NBPs) etching. The localized surface plasmon resonance absorption peaks of Au NBPs blue shift and accompanied a vivid color change after etching effect. Based on this color change, HCG could be qualitative and semi-quantitative detected. Because of the introduction of HCR and enzyme amplification technique, the proposed method exhibited high sensitivity with a linear range of 0.1-2000 pg/mL and limit of detection (LOD) of 0.1 pg/mL. Finally, the proposed immunosensor was used to detect clinical serum samples. The results show there are no significant differences between clinical results and the test results by this method, indicating the practicability of the proposed method.
Collapse
Affiliation(s)
- Feifei Ma
- Department of Gynecology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, 311200, China
| | - Zhe Zhao
- Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Jiahui Huang
- Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Qing Xiong
- Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Shaohua Xu
- Integrated Chinese and Western Medicine Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
3
|
Huang C, Duan X, Guo Y, Li P, Sun J, Shao J, Wang Y. Molecular circuit for exponentiation based on the domain coding strategy. Front Genet 2024; 14:1331951. [PMID: 38323242 PMCID: PMC10845046 DOI: 10.3389/fgene.2023.1331951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024] Open
Abstract
DNA strand displacement (DSD) is an efficient technology for constructing molecular circuits. However, system computing speed and the scale of logical gate circuits remain a huge challenge. In this paper, a new method of coding DNA domains is proposed to carry out logic computation. The structure of DNA strands is designed regularly, and the rules of domain coding are described. Based on this, multiple-input and one-output logic computing modules are built, which are the basic components forming digital circuits. If the module has n inputs, it can implement 2n logic functions, which reduces the difficulty of designing and simplifies the structure of molecular logic circuits. In order to verify the superiority of this method for developing large-scale complex circuits, the square root and exponentiation molecular circuits are built. Under the same experimental conditions, compared with the dual-track circuits, the simulation results show that the molecular circuits designed based on the domain coding strategy have faster response time, simpler circuit structure, and better parallelism and scalability. The method of forming digital circuits based on domain coding provides a more effective way to realize intricate molecular control systems and promotes the development of DNA computing.
Collapse
Affiliation(s)
- Chun Huang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaoqiang Duan
- Zhengzhou Kechuang Electronics Co., Ltd., Zhengzhou, China
| | - Yifei Guo
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Panlong Li
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Junwei Sun
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiaying Shao
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yanfeng Wang
- School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
4
|
Su Z, Zhang L, Yu Y, Lin B, Wang Y, Guo M, Cao Y. An electrochemical determination strategy for miRNA based on bimetallic nanozyme and toehold-mediated DNA replacement procedure. Mikrochim Acta 2023; 190:149. [PMID: 36952059 DOI: 10.1007/s00604-023-05720-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/24/2023] [Indexed: 03/24/2023]
Abstract
An electrochemical strategy based on bimetallic nanozyme in collaboration with toehold-mediated DNA replacement effect is proposed for the sensitive determination of miRNA-21. The AuPt nanoparticles (AuPt NPs) are prepared as a catalytic beacon; it shows favorable peroxidase properties with a Michaelis contant (Km) of 0.072 mM for H2O2, which is capable of catalyzing H2O2 to induce an intense redox reaction, and causing a measurable electrochemical signal. To further enhance the strength of the signal response, a novel toehold-mediated DNA replacement strategy is employed. DNA strands with specific sequences are modified on electrodes and AuPt NPs, respectively. In the presence of miRNA-21, a cyclic substitution effect is subsequently activated via a specific toehold sequence and leads to a large accumulation of AuPt NPs on the electrodes. Subsequently, a strong signal depending on the amount of miRNA-21 is obtained after adding a small amount of H2O2. The analytical range of this determination method is from 0.1 pM to 1.0 nM, and the LOD is 84.1 fM. The spike recoveries for serum samples are 95.0 to 102.4% and the RSD values are 3.7 to 5.8%. The results suggests a promising application of the established method in clinical testing and disease diagnosis.
Collapse
Affiliation(s)
- Zhanying Su
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Li Zhang
- School of Environmental and Chemical Engineering, Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, People's Republic of China.
| | - Ying Yu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Bixia Lin
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yumin Wang
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|