1
|
Wu X, Liu Q, Zheng L, Lin S, Zhang Y, Song Y, Wang Z. Innervate Commercial Fabrics with Spirally-Layered Iontronic Fibrous Sensors Toward Dual-Functional Smart Garments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402767. [PMID: 38953387 PMCID: PMC11434216 DOI: 10.1002/advs.202402767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Electronic fabrics exhibit desirable breathability, wearing comfort, and easy integration with garments. However, surficial deposition of electronically functional materials/compounds onto fabric substrates would consequentially alter their intrinsic properties (e.g., softness, permeability, biocompatibility, etc.). To address this issue, here, a strategy to innervate arbitrary commercial fabrics with unique spirally-layered iontronic fibrous (SLIF) sensors is presented to realize both mechanical and thermal sensing functionalities without sacrificing the intrinsic fabric properties. The mechanical sensing function is realized via mechanically regulating the interfacial ionic supercapacitance between two perpendicular SLIF sensors, while the thermal sensing function is achieved based on thermally modulating the intrinsic ionic impedance in a single SLIF sensor. The resultant SLIF sensor-innervated electronic fabrics exhibit high mechanical sensitivity of 81 N-1, superior thermal sensitivity of 34,400 Ω °C-1, and more importantly, greatly minimized mutual interference between the two sensing functions. As demonstrations, various smart garments are developed for the precise monitoring of diverse human physiological signals. Moreover, artificial intelligence-assisted object recognition with high-accuracy (97.8%) is demonstrated with a SLIF sensor-innervated smart glove. This work opens up a new path toward the facile construction of versatile smart garments for wearable healthcare, human-machine interfaces, and the Internet of Things.
Collapse
Affiliation(s)
- Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Lifei Zheng
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Sijian Lin
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiqun Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yangyang Song
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhuqing Wang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Hu T, Sheng B. A Highly Sensitive Strain Sensor with Wide Linear Sensing Range Prepared on a Hybrid-Structured CNT/Ecoflex Film via Local Regulation of Strain Distribution. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38603806 DOI: 10.1021/acsami.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
With the development of information technology, high-performance wearable strain sensors with high sensitivity and stretchability have played a significant role in motion detection. However, many high-sensitivity and outstanding-stretchability strain sensors possess a limited linear sensing range, which limits the enhancement of the flexible strain sensors' performance. Herein, we develop a hybrid-structured carbon nanotube (CNT)/Ecoflex strain sensor with laser-engraved grooves along with punched circular holes in a composite CNT/Ecoflex film by vacuum filtration and permeation. By optimizing the distribution of grooves and circular holes, the strain in the sensing layer can be locally regulated, which alters the morphology of cracks under strain and allows the hybrid-structured CNT/Ecoflex strain sensor to simultaneously exhibit high sensitivity (GF = 43.8) as well as a wide linear sensing range (200%). On the basis of excellent performance, the hybrid-structured CNT/Ecoflex strain sensor is capable of detecting movements in various parts of the human body, including movements of larynx and joint bending.
Collapse
Affiliation(s)
- Tao Hu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
3
|
Jiang C, Sheng B. Linear Capacitive Pressure Sensor with Gradient Architecture through Laser Ablation on MWCNT/Ecoflex Film. Polymers (Basel) 2024; 16:962. [PMID: 38611220 PMCID: PMC11013779 DOI: 10.3390/polym16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The practical application of flexible pressure sensors, including electronic skins, wearable devices, human-machine interaction, etc., has attracted widespread attention. However, the linear response range of pressure sensors remains an issue. Ecoflex, as a silicone rubber, is a common material for flexible pressure sensors. Herein, we have innovatively designed and fabricated a pressure sensor with a gradient micro-cone architecture generated by CO2 laser ablation of MWCNT/Ecoflex dielectric layer film. In cooperation with the gradient micro-cone architecture and a dielectric layer of MWCNT/Ecoflex with a variable high dielectric constant under pressure, the pressure sensor exhibits linearity (R2 = 0.990) within the pressure range of 0-60 kPa, boasting a sensitivity of 0.75 kPa-1. Secondly, the sensor exhibits a rapid response time of 95 ms, a recovery time of 129 ms, hysteresis of 6.6%, and stability over 500 cycles. Moreover, the sensor effectively exhibited comprehensive detection of physiological signals, airflow detection, and Morse code communication, thereby demonstrating the potential for various applications.
Collapse
Affiliation(s)
- Chenkai Jiang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
4
|
Zhou J, Zhao S, Tang L, Zhang D, Sheng B. Programmable and Weldable Superelastic EGaIn/TPU Composite Fiber by Wet Spinning for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38031357 DOI: 10.1021/acsami.3c11068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
As an essential component of flexible electronics, superelastic conductive fibers with good mechanical and electrical properties have drawn significant attention, especially in their preparation. In this study, we prepared a superelastic conductive fiber composed of eutectic gallium-indium (EGaIn) and thermoplastic polyurethane (TPU) by simple wet spinning. The composite conductive fiber with a liquid metal (LM) content of 85 wt % achieved a maximum strain at a break of 659.2%, and after the conductive pathway in the porous structure of the composite fibers was fully activated, high conductivity (1.2 × 105 S/m) was achieved with 95 wt % LM by mechanical sintering and training processes. The prepared conductive fibers exhibited a stable resistive response as the fibers were strained and could be sewn into fabrics and used as wearable strain sensors to monitor various human motions. These conductive fibers can be molded into helical by heating, and they have excellent electrical properties at a maximum mechanical strain of 3400% (resistance change <0.27%) with a helical index of 11. Moreover, the conductive fibers can be welded to various two or three-dimensional conductors. In summary, with a scalable manufacturing process, weldability, superelasticity, and high electrical conductivity, EGaIn/TPU composite fibers fabricated by wet spinning have considerable potential for flexible electronics.
Collapse
Affiliation(s)
- Jingyu Zhou
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shanshan Zhao
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Lei Tang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Dawei Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
5
|
Li J, Chen S, Zhou J, Tang L, Jiang C, Zhang D, Sheng B. Flexible BaTiO 3-PDMS Capacitive Pressure Sensor of High Sensitivity with Gradient Micro-Structure by Laser Engraving and Molding. Polymers (Basel) 2023; 15:3292. [PMID: 37571185 PMCID: PMC10422564 DOI: 10.3390/polym15153292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The significant potential of flexible sensors in various fields such as human health, soft robotics, human-machine interaction, and electronic skin has garnered considerable attention. Capacitive pressure sensor is popular given their mechanical flexibility, high sensitivity, and signal stability. Enhancing the performance of capacitive sensors can be achieved through the utilization of gradient structures and high dielectric constant media. This study introduced a novel dielectric layer, employing the BaTiO3-PDMS material with a gradient micro-cones architecture (GMCA). The capacitive sensor was constructed by incorporating a dielectric layer GMCA, which was fabricated using laser engraved acrylic (PMMA) molds and flexible copper-foil/polyimide-tape electrodes. To examine its functionality, the prepared sensor was subjected to a pressure range of 0-50 KPa. Consequently, this sensor exhibited a remarkable sensitivity of up to 1.69 KPa-1 within the pressure range of 0-50 KPa, while maintaining high pressure-resolution across the entire pressure spectrum. Additionally, the pressure sensor demonstrated a rapid response time of 50 ms, low hysteresis of 0.81%, recovery time of 160 ms, and excellent cycling stability over 1000 cycles. The findings indicated that the GMCA pressure sensor, which utilized a gradient structure and BaTiO3-PDMS material, exhibited notable sensitivity and a broad linear pressure range. These results underscore the adaptability and viability of this technology, thereby facilitating enhanced flexibility in pressure sensors and fostering advancements in laser manufacturing and flexible devices for a wider array of potential applications.
Collapse
Affiliation(s)
- Jiayi Li
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (J.Z.); (L.T.); (C.J.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai 201109, China;
| | - Jingyu Zhou
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (J.Z.); (L.T.); (C.J.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Lei Tang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (J.Z.); (L.T.); (C.J.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Chenkai Jiang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (J.Z.); (L.T.); (C.J.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Dawei Zhang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (J.Z.); (L.T.); (C.J.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.L.); (J.Z.); (L.T.); (C.J.); (D.Z.)
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
6
|
Qu C, Lu M, Zhang Z, Chen S, Liu D, Zhang D, Wang J, Sheng B. Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood. Molecules 2023; 28:5339. [PMID: 37513212 PMCID: PMC10385064 DOI: 10.3390/molecules28145339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, laser engraving has received widespread attention as a convenient, efficient, and programmable method which has enabled high-quality porous graphene to be obtained from various precursors. Laser engraving is often used to fabricate the dielectric layer with a microstructure for capacitive pressure sensors; however, the usual choice of electrodes remains poorly flexible metal electrodes, which greatly limit the overall flexibility of the sensors. In this work, we propose a flexible capacitive pressure sensor made entirely of thermoplastic polyurethane (TPU) and laser-induced graphene (LIG) derived from wood. The capacitive pressure sensor consisted of a flexible LIG/TPU electrode (LTE), an LIG/TPU electrode with a microhole array, and a dielectric layer of TPU with microcone array molded from a laser-engraved hole array on wood, which provided high sensitivity (0.11 kPa-1), an ultrawide pressure detection range (20 Pa to 1.4 MPa), a fast response (~300 ms), and good stability (>4000 cycles, at 0-35 kPa). We believe that our research makes a significant contribution to the literature, because the easy availability of the materials derived from wood and the overall consistent flexibility meet the requirements of flexible electronic devices.
Collapse
Affiliation(s)
- Chenkai Qu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Meilan Lu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Ziyan Zhang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
| | - Dewen Liu
- Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai 201109, China
| | - Dawei Zhang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Jing Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|
7
|
Karlapudi MC, Vahdani M, Bandari SM, Peng S, Wu S. A Comparative Study on the Effects of Spray Coating Methods and Substrates on Polyurethane/Carbon Nanofiber Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:3245. [PMID: 36991956 PMCID: PMC10054467 DOI: 10.3390/s23063245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Thermoplastic polyurethane (TPU) has been widely used as the elastic polymer substrate to be combined with conductive nanomaterials to develop stretchable strain sensors for a variety of applications such as health monitoring, smart robotics, and e-skins. However, little research has been reported on the effects of deposition methods and the form of TPU on their sensing performance. This study intends to design and fabricate a durable, stretchable sensor based on composites of thermoplastic polyurethane and carbon nanofibers (CNFs) by systematically investigating the influences of TPU substrates (i.e., either electrospun nanofibers or solid thin film) and spray coating methods (i.e., either air-spray or electro-spray). It is found that the sensors with electro-sprayed CNFs conductive sensing layers generally show a higher sensitivity, while the influence of the substrate is not significant and there is no clear and consistent trend. The sensor composed of a TPU solid thin film with electro-sprayed CNFs exhibits an optimal performance with a high sensitivity (gauge factor ~28.2) in a strain range of 0-80%, a high stretchability of up to 184%, and excellent durability. The potential application of these sensors in detecting body motions has been demonstrated, including finger and wrist-joint movements, by using a wooden hand.
Collapse
Affiliation(s)
| | - Mostafa Vahdani
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Nie M, Li B, Hsieh YL, Fu KK, Zhou J. Stretchable One-Dimensional Conductors for Wearable Applications. ACS NANO 2022; 16:19810-19839. [PMID: 36475644 DOI: 10.1021/acsnano.2c08166] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continuous, one-dimensional (1D) stretchable conductors have attracted significant attention for the development of wearables and soft-matter electronics. Through the use of advanced spinning, printing, and textile technologies, 1D stretchable conductors in the forms of fibers, wires, and yarns can be designed and engineered to meet the demanding requirements for different wearable applications. Several crucial parameters, such as microarchitecture, conductivity, stretchability, and scalability, play essential roles in designing and developing wearable devices and intelligent textiles. Methodologies and fabrication processes have successfully realized 1D conductors that are highly conductive, strong, lightweight, stretchable, and conformable and can be readily integrated with common fabrics and soft matter. This review summarizes the latest advances in continuous, 1D stretchable conductors and emphasizes recent developments in materials, methodologies, fabrication processes, and strategies geared toward applications in electrical interconnects, mechanical sensors, actuators, and heaters. This review classifies 1D conductors into three categories on the basis of their electrical responses: (1) rigid 1D conductors, (2) piezoresistive 1D conductors, and (3) resistance-stable 1D conductors. This review also evaluates the present challenges in these areas and presents perspectives for improving the performance of stretchable 1D conductors for wearable textile and flexible electronic applications.
Collapse
Affiliation(s)
- Mingyu Nie
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - Boxiao Li
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - You-Lo Hsieh
- Biological and Agricultural Engineering, University of California at Davis, California95616, United States
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Jian Zhou
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| |
Collapse
|
9
|
Shi S, Liang J, Qu C, Chen S, Sheng B. Ramie Fabric Treated with Carboxymethylcellulose and Laser Engraved for Strain and Humidity Sensing. MICROMACHINES 2022; 13:1309. [PMID: 36014231 PMCID: PMC9414723 DOI: 10.3390/mi13081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 05/08/2023]
Abstract
Wearable fabric sensors have attracted enormous attention due to their huge potential in human health and activity monitoring, human-machine interaction and the Internet of Things (IoT). Among natural fabrics, bast fabric has the advantage of high strength, good resilience and excellent permeability. Laser engraving, as a high throughput, patternable and mask-free method, was demonstrated to fabricate fabric sensors. In this work, we developed a simplified, cost-effective and environmentally friendly method for engraving ramie fabric (a kind of bast fabric) directly by laser under an ambient atmosphere to prepare strain and humidity sensors. We used carboxymethylcellulose (CMC) to pretreat ramie fabric before laser engraving and gained laser-carbonized ramie fabrics (LCRF) with high conductivity (65 Ω sq-1) and good permeability. The strain and humidity sensors had high sensitivity and good flexibility, which can be used for human health and activity monitoring.
Collapse
Affiliation(s)
- Shangxuan Shi
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Jiao Liang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Chenkai Qu
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| | - Shangbi Chen
- Shanghai Aerospace Control Technology Institute, Shanghai 200233, China
| | - Bin Sheng
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China
| |
Collapse
|