1
|
Abstract
Organic peroxides are becoming popular intermediates for novel chemical transformations. The weak O-O bond is readily reduced by transition metals, including iron and copper, to initiate a radical cascade process that breaks C-C bonds. Great potential exists for the rapid generation of complexity, originating from the ability to couple the resulting free radicals with a wide range of partners. First, this review article discusses the history and synthesis of organic peroxides, providing the context necessary to understand this methodology. Then, it highlights 91 examples of recent applications of the radical functionalization of C-C bonds accessed through the transition metal-mediated reduction of organic peroxides. Finally, we provide some comments about safety when working with organic peroxides.
Collapse
Affiliation(s)
- Jeremy H. Dworkin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Brady W. Dehnert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
2
|
Jia J, Kato T, Maruoka K. p-Methoxybenzyl-Radical-Promoted Chemoselective Protection of sec-Alkylamides. J Org Chem 2023; 88:2575-2582. [PMID: 36731133 DOI: 10.1021/acs.joc.2c02582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hitherto difficult site-selective p-methoxybenzylation of secondary amides using p-methoxybenzylated alkylsilyl peroxides as a novel p-methoxybenzylation agent under copper catalysis is reported. The reaction proceeds under mild reaction conditions in a highly chemoselective manner. This approach was successfully applied to the site-selective p-methoxybenzylation of peptides.
Collapse
Affiliation(s)
- JingWen Jia
- Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Keiji Maruoka
- Laboratory of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.,School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Zhou M, Lu H, Wang Z, Kato T, Liu Y, Maruoka K. Synthesis of 1,3‑dicarbonyl compounds bearing hetero-substituted α-quaternary carbon via Fe(II)-catalyzed alkylation with alkylsilyl peroxides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Wang M, Tao J, Yang F, Xin H, Gao S, Guo L, Gao P. Iron‐Catalyzed Ring‐Opening/Allylation of Cycloalkyl Hydroperoxides with Allylic Sulfones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Hua Wang
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Jing‐Qi Tao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Fan Yang
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Hong Xin
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Shu‐Xin Gao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Li‐Na Guo
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| | - Pin Gao
- Department of Chemistry School of Chemistry Xi'an Key Laboratory of Sustainable Energy Material Chemistry MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter Xi'an Jiaotong University No.28, Xianning West Road Xi'an 710049 P. R. China
| |
Collapse
|
5
|
Zhong W, Xu W, Yang Q, Kato T, Liu Y, Maruoka K. A new approach for the copper-catalyzed functionalization of alkyl hydroperoxides with organosilicon compounds via in-situ-generated alkylsilyl peroxides. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhou C, Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic CuI‐DMAP System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Canhua Zhou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jiamin Lv
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Hanbin Lu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
7
|
Sun QX, Chen H, Liu S, Wang XQ, Duan XH, Guo LN. Iron-Catalyzed Thiolation and Selenylation of Cycloalkyl Hydroperoxides via C-C Bond Cleavage. J Org Chem 2021; 86:11987-11997. [PMID: 34374284 DOI: 10.1021/acs.joc.1c01366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A cheap iron-catalyzed C-C bond cleavage/thiolation and selenylation of cycloalkyl hydroperoxides are presented. This redox-neutral protocol provides efficient access to diverse distal keto-functionalized thioethers and selenium compounds. Remarkably, only some amounts of disulfides are required for this transformation.
Collapse
Affiliation(s)
- Qing-Xin Sun
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - He Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiao-Qiang Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Chen H, Guo LN, Sun QX, Chen L, Tao JQ, Gao P. Copper-catalyzed redox neutral ketoalkylation of Csp 2–H bonds via C–C bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00882j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An efficient copper-catalyzed ketoalkylation of Csp2–H bonds with cycloalkyl silyl peroxides under mild conditions is presented. A series of Csp2–H bonds in quinoxalin-2(1H)-ones, heteroaromatic N-oxides and quinones were amenable to this protocol.
Collapse
Affiliation(s)
- He Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing-Xin Sun
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Chen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing-Qi Tao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|