1
|
Purohit S, Rana R, Tyagi A, Bahuguna A, Oswal P, Anshika, Kumar A. Organosulphur and organoselenium compounds as ligands for catalytic systems in the Sonogashira coupling. Org Biomol Chem 2024; 22:6215-6245. [PMID: 38873754 DOI: 10.1039/d4ob00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sonogashira coupling is a reaction of aryl/vinyl halides with terminal alkynes. It is used for the synthesis of conjugated enynes. Generally, copper (Cu) is required as a mediator for this reaction. It requires a long reaction time, high catalyst loading, or expensive ligands. Recently, homogeneous, heterogeneous, and nanocatalysts have been developed using organosulphur and organoselenium compounds as building blocks. Preformed complexes of metals with organosulphur and organoselenium ligands are used for homogeneous catalysis. Heterogeneous catalytic systems have also been developed using Cu, Pd, and Ni as metals. The nanocatalytic systems (synthesized using such ligands) include copper selenides and stabilized palladium(0) nanospecies. This article aims to cover the developments in the field of the processes and techniques used so far to generate catalytically relevant organic ligands having sulphur or selenium donor sites, the utility of such ligands in the syntheses of homogeneous, heterogeneous, and nanocatalytic systems, and critical analysis of their application in the catalysis of this coupling reaction. The results of catalysis are analyzed in terms of the effects of the S/Se donor, halogen atom of aryl halide, the effect of the presence/absence of electron-withdrawing or electron-donating groups or substituents on the aromatic ring of haloarenes/substituted phenylacetylenes, as well as the position (ortho or para) of the substitution. Substrate scope is discussed for all the kinds of catalysis. The supremacy of heterogeneous and nanocatalytic systems indicates promising future prospects.
Collapse
Affiliation(s)
- Suraj Purohit
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Ramakshi Rana
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anupma Tyagi
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Anurag Bahuguna
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Preeti Oswal
- Department of Chemistry, Texas A&M University, College Station, 77842-3012, USA
| | - Anshika
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| | - Arun Kumar
- Department of Chemistry, School of Physical Sciences, Doon University, Dehradun, 248001, India.
| |
Collapse
|
2
|
Cao J, Ding W, Zou G. Tetrabutylammonium Bromide (TBAB)-Promoted, Pd/Cu-Catalyzed Sonogashira Coupling of N-Tosyl Aryltriazenes. Org Lett 2024; 26:4576-4580. [PMID: 38775280 DOI: 10.1021/acs.orglett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.
Collapse
Affiliation(s)
- Jun Cao
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, China
| |
Collapse
|
3
|
Sil S, Krishnapriya AU, Mandal P, Kuniyil R, Mandal SK. Cross-Coupling Between Aryl Halides and Aryl Alkynes Catalyzed by an Odd Alternant Hydrocarbon. Chemistry 2024:e202400895. [PMID: 38584581 DOI: 10.1002/chem.202400895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/09/2024]
Abstract
Catalytic cross-coupling between aryl halides and alkynes is considered an extremely important organic transformation (popularly known as the Sonogashira coupling) and it requires a transition metal-based catalyst. Accomplishing such transformation without any transition metal-based catalyst in the absence of any external stimuli such as heat, photoexcitation or cathodic current is highly challenging. This work reports transition-metal-free cross-coupling between aryl halides and alkynes synthesizing a rich library of internal alkynes without any external stimuli. A chemically double-reduced phenalenyl (PLY)-based molecule with the super-reducing property was employed for single electron transfer to activate aryl halides generating reactive aryl radicals, which subsequently react with alkyne. This protocol covers not only various types of aryl, heteroaryl and polyaryl halides but also applies to a large variety of aromatic alkynes at room temperature. With a versatile substrate scope successfully tested on more than 75 entries, this radical-mediated pathway has been explained by several control experiments. All the key reactive intermediates have been characterized with spectroscopic evidence. Detailed DFT calculations have been instrumental in portraying the mechanistic pathway. Furthermore, we have successfully extended this transition-metal-free catalytic strategy for the first time towards solvent-free cross-coupling between solid aryl halide and alkyne substrates.
Collapse
Affiliation(s)
- Swagata Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | | | - Pallabi Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology, Palakkad, Palakkad, 678557, Kerala, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
4
|
Chen H, Ai Z, Liao X. Protocol for Sonogashira coupling of alkynes and aryl halides via nickel catalysis. STAR Protoc 2024; 5:102900. [PMID: 38367230 PMCID: PMC10879785 DOI: 10.1016/j.xpro.2024.102900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
Alkynes are widely present in natural products and pharmaceutical compounds. Here, we present a protocol for nickel-catalyzed cross-coupling of terminal alkynes with aryl iodides or bromides for constructing a C(sp2)-C(sp) bond. We describe steps for reagent preparation, reaction setup, purification process, and product characterization. We also detail procedures for obtaining a single crystal of 6-(phenylethynyl)-1-(phenylsulfonyl)-1H-indole (3b). The application of this protocol is limited to aryl bromide and iodide. For complete details on the use and execution of this protocol, please refer to Chen et al.1.
Collapse
Affiliation(s)
- Hui Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Zhenkang Ai
- School of Pharmaceutical Sciences, State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing 100084, China
| | - Xuebin Liao
- School of Pharmaceutical Sciences, State Key Laboratory of Molecular Oncology, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Pennamuthiriyan A, Rengan R. Nickel Pincer Complexes Catalyzed Sustainable Synthesis of 3,4-Dihydro-2 H-1,2,4-benzothiadiazine-1,1-dioxides via Acceptorless Dehydrogenative Coupling of Primary Alcohols. J Org Chem 2024; 89:2494-2504. [PMID: 38326039 DOI: 10.1021/acs.joc.3c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
We report the atom-economic and sustainable synthesis of biologically important 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide (DHBD) derivatives from readily available aromatic primary alcohols and 2-aminobenzenesulfonamide catalyzed by nickel(II)-N∧N∧S pincer-type complexes. The synthesized nickel complexes have been well-studied by elemental and spectroscopic (FT-IR, NMR, and HRMS) analyses. The solid-state molecular structure of complex 2 has been authenticated by a single-crystal X-ray diffraction study. Furthermore, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine-1,1-dioxide derivatives have been synthesized (24 examples) utilizing a 3 mol % Ni(II) catalyst through acceptorless dehydrogenative coupling of benzyl alcohols with benzenesulfonamide. Gratifyingly, the catalytic protocol is highly selective with the yield up to 93% and produces eco-friendly water/hydrogen gas as byproducts. The control experiments and plausible mechanistic investigations indicate that the coupling of the in situ generated aldehyde with benzenesulfonamide leads to the desired product. In addition, a large-scale synthesis of one of the thiadiazine derivatives unveils the synthetic usefulness of the current methodology.
Collapse
Affiliation(s)
- Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
6
|
Nasseri F, Nasseri MA, Kassaee MZ, Yavari I. Synergistic performance of a new bimetallic complex supported on magnetic nanoparticles for Sonogashira and C-N coupling reactions. Sci Rep 2023; 13:18153. [PMID: 37875534 PMCID: PMC10598020 DOI: 10.1038/s41598-023-44168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
This paper describes the synthesis of a novel Cu-Ni bimetallic system comprising of magnetic nanoparticles, as the core, and 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole (4-ABPT), as a conjugated bridge, between nickel and copper species. With low Cu and Ni loading (0.06 mol% Ni, 0.08 mol% Cu), the resulting Fe3O4@SiO2@4-ABPT/Cu-Ni showed to be a highly efficient catalyst for the Sonogashira and C-N cross-coupling reactions. The developed catalyst was well characterized by FT-IR, XRD, EDX-mapping, FE-SEM, TEM, ICP, VSM, TGA/DTG/DTA, LSV, and XPS techniques. Fe3O4@SiO2@4-ABPT/Cu-Ni nanocatalyst was compatible with a wide range of amines and aryl halides in the Sonogashira and C-N cross-coupling reactions and offered desired coupling products in high to excellent yields under palladium- and solvent-free conditions. Based on the XPS results, the 4-ABPT ligand can adjust electron transfer between Ni and Cu in Fe3O4@SiO2@4-ABPT/Cu-Ni, promoting the formation and stabilization of Cu+ and Ni3+ species. Electronic interactions and the synergistic effect between these metals increased the selectivity and activity of Fe3O4@SiO2@4-ABPT/Cu-Ni catalyst in the Sonogashira and C-N cross-coupling reactions compared with its monometallic counterparts. Additionally, the magnetic properties of Fe3O4@SiO2@4-ABPT/Cu-Ni facilitated its separation from the reaction mixture, promoting its reuse for several times with no significant loss in its catalytic activity or performance.
Collapse
Affiliation(s)
- Fatemeh Nasseri
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran
- Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P.O. Box 97175-615, Birjand, Iran
| | - Mohammad Ali Nasseri
- Department of Chemistry, Faculty of Basic Sciences, University of Birjand, P.O. Box 97175-615, Birjand, Iran.
| | - Mohamad Zaman Kassaee
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran
| | - Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14155-175, Tehran, Iran
| |
Collapse
|
7
|
Singh P, Shaikh AC. Photochemical Sonogashira coupling reactions: beyond traditional palladium-copper catalysis. Chem Commun (Camb) 2023; 59:11615-11630. [PMID: 37697801 DOI: 10.1039/d3cc03855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Sonogashira coupling is one of the Nobel reactions discovered in 1975 to form a C-C bond using palladium and copper as co-catalysts. Incorporating alkyne functionalities either in macro or micro molecules by using this Sonogashira reaction has already proven its viability and relevance in the sphere of synthetic chemistry. While aiming for sustainable chemistry, in recent years, visible light photoredox catalysts have appeared as an advanced tool in this regard. In this review, we aim to portray a comprehensive summary of modern visible light photo redox catalyzed Sonogashira reaction, which will leave space for the readers to rethink alternative strategies to conduct the Sonogashira reaction. This review briefly describes the implementation of various metal-based nanomaterial photocatalysts, developing either copper or palladium-free photocatalytic methods, and organo-photolytic and bioinspired photocatalysts for the Sonogashira coupling reactions. Besides, this review also gives a concise overview of the mechanistic aspects and highlights selective examples for substrate scope.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology, Ropar (IIT Ropar), Rupnagar, Punjab-140 001, India.
| |
Collapse
|
8
|
Ma X, Wang L, Meng X, Li W, Wang Q, Gu Y, Qiu L. NHC-mediated photocatalytic deoxygenation of alcohols for the synthesis of internal alkynes via a Csp 3-Csp coupling reaction. Org Biomol Chem 2023; 21:6693-6696. [PMID: 37548245 DOI: 10.1039/d3ob01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
NHC-mediated deoxygenation of alcohols under photocatalytic conditions is described. The process provides various alkyl radicals, which can react with 1-bromoalkyne via Csp3-Csp coupling to afford internal alkynes in moderate to good yields. The method offers a new and convenient approach to synthesize internal alkynes.
Collapse
Affiliation(s)
- Xueji Ma
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Liujie Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Xiaoqing Meng
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Wenbo Li
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Qin Wang
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Yuke Gu
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| | - Lingna Qiu
- School of Pharmacy, Key Laboratory of Nano-carbon Modified Film Technology Engineering of Henan Province, Xinxiang University, Xinxiang 453000, P. R. China.
| |
Collapse
|
9
|
Magne A, Carretier E, Ubiera Ruiz L, Clair T, Le Hir M, Moulin P. Recovery of Homogeneous Platinoid Catalysts from Pharmaceutical Media: Review on the Existing Treatments and the Perspectives of Membrane Processes. MEMBRANES 2023; 13:738. [PMID: 37623799 PMCID: PMC10456598 DOI: 10.3390/membranes13080738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Catalyst recovery is a major challenge for reaching the objectives of green chemistry for industry. Indeed, catalysts enable quick and selective syntheses with high reaction yields. This is especially the case for homogeneous platinoid catalysts which are almost indispensable for cross-coupling reactions often used by the pharmaceutical industry. However, they are based on scarce, expensive, and toxic resources. In addition, they are quite sensitive and degrade over time at the end of the reaction. Once degraded, their regeneration is complex and hazardous to implement. Working on their recovery could lead to highly effective catalytic chemistries while limiting the environmental and economic impacts of their one-time uses. This review aims to describe and compare conventional processes for metal removal while discussing their advantages and drawbacks considering the objective of homogeneous catalyst recovery. Most of them lead to difficulty recycling active catalysts due to their ability to only treat metal ions or to chelate catalysts without the possibility to reverse the mechanism. However, membrane processes seem to offer some perspectives with limiting degradations. While membranes are not systematically the best option for recycling homogeneous catalysts, current development might help improve the separation between pharmaceutical active ingredients and catalysts and enable their recycling.
Collapse
Affiliation(s)
- Adrien Magne
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Emilie Carretier
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
| | - Lilivet Ubiera Ruiz
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Thomas Clair
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Morgane Le Hir
- Sanofi Chimie, Laboratoire Génie des Procédés 1, Process Engineering, Global Chemistry Manufacturing & Control (CMC), 45 Chemin de Mételine, 04200 Sisteron, France; (L.U.R.); (T.C.); (M.L.H.)
| | - Philippe Moulin
- Aix Marseille Univ., CNRS, Centrale Marseille, M2P2 UMR 7340, Equipe Procédés Membranaires (EPM), Europole de l’Arbois, BP80, Pavillon Laennec, Hall C, 13545 Aix en Provence Cedex, France; (A.M.); (E.C.)
| |
Collapse
|
10
|
Kobatake M, Miyoshi N, Ueno M. One-Pot Tandem Coupling Method for the Short-Step Formal Synthesis of Riccardin C. Chemistry 2023; 29:e202203805. [PMID: 36573022 DOI: 10.1002/chem.202203805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 12/28/2022]
Abstract
One-pot reactions reduce reagent amounts and circumvent process treatments, such as work-up and purifications in multi-step reactions. In this study, we achieved the formal total synthesis of riccardin C through a one-pot reaction by simultaneously linking four units through two Sonogashira coupling reactions and one Suzuki coupling reaction, followed by reduction and deprotection. Thus, this one-pot method comprised five steps and did not require the purification of intermediate reaction mixtures, which saves resources, such as reagents and solvents, and expedites the work process.
Collapse
Affiliation(s)
- Miho Kobatake
- Department of Natural Science, Graduate School of Sciences and Technology, Tokushima University, 2-1 Minami-jousanjima, Tokushima, 770-8506, Japan
| | - Norikazu Miyoshi
- Department of Natural Science, Graduate School of Sciences and Technology, Tokushima University, 2-1 Minami-jousanjima, Tokushima, 770-8506, Japan
| | - Masaharu Ueno
- Department of Natural Science, Graduate School of Sciences and Technology, Tokushima University, 2-1 Minami-jousanjima, Tokushima, 770-8506, Japan
| |
Collapse
|
11
|
Messaoudi C, Jismy B, Jacquemin J, Allouchi H, M'Rabet H, Abarbri M. Stepwise synthesis of 2,6-difunctionalized ethyl pyrazolo[1,5- a]pyrimidine-3-carboxylate via site-selective cross-coupling reactions: experimental and computational studies. Org Biomol Chem 2022; 20:9684-9697. [PMID: 36416338 DOI: 10.1039/d2ob01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A variety of novel disubstituted 2-(alknyl, aryl and arylamine)-6-alkynylpyrazolo[1,5-a]pyrimidine derivatives was prepared via sequential site-selective cross-coupling reactions from 2,6-dibromopyrazolo[1,5-a]pyrimidine 3. The regio-controlled Sonogashira-type coupling of 3 with a wide range of terminal alkynes proceeded smoothly with excellent selectivity in favor of the C6-position through careful adjustment of the coupling conditions, followed by the subsequent introduction of alkynyl, aryl or arylamine groups at the C2-position via the Sonogashira, Suzuki-Miyaura and Buchwald-Hartwig coupling reactions, respectively. These promising results allow for further use and diversification of the chemically and biologically interesting pyrazolo[1,5-a]pyrimidine scaffold. In addition, computational studies were conducted to provide explanations for the origin of regioselectivity.
Collapse
Affiliation(s)
- Chaima Messaoudi
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France. .,Laboratoire de Synthese Organique Sélective et Hétérocyclique-Evaluation de l'Activité Biologique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| | - Johan Jacquemin
- Materials Science and Nano-Engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660-Hay Moulay Rachid, Benguerir 43150, Morocco
| | - Hassan Allouchi
- Faculté de Pharmacie, Université de Tours, EA 7502 SIMBA, 31 Avenue Monge, 37200 Tours, France
| | - Hédi M'Rabet
- Laboratoire de Synthese Organique Sélective et Hétérocyclique-Evaluation de l'Activité Biologique, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis 2092, Tunisia
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E), EA 6299. Université de Tours, Faculté des Sciences et Techniques, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France.
| |
Collapse
|
12
|
Pei M, Luo X, Tang Q, Huang N, Wang L. The application research on Cu-Al@SBA-15 bimetallic synergistic effect in the C-X bond sequential assembly. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
15-Membered Macrocyclic Schiff-Base-Pd(0) Complex Immobilized on Fe3O4 MNPs: An Novel Nanomagnetic Catalyst for the One-Pot Three-Component C–H Chalcogenation of Azoles by S8 and Aryl Iodides. Catal Letters 2022. [DOI: 10.1007/s10562-022-04194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Kotovshchikov YN, Binyakovsky AA, Latyshev GV, Lukashev NV, Beletskaya IP. Copper-catalyzed deacetonative Sonogashira coupling. Org Biomol Chem 2022; 20:7650-7657. [PMID: 36134515 DOI: 10.1039/d2ob01267g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient Pd- and phosphine-free protocol for assembling internal alkynes from tertiary propargyl alcohols and (het)aryl halides has been developed. The proposed tandem approach includes the base-promoted retro-Favorskii fragmentation followed by Cu-catalyzed C(sp)-C(sp2) cross-coupling. The use of inexpensive reagents (e.g. a catalyst, additives, a base, and a solvent) and good functional group tolerance make the procedure practical and cost-effective. The synthetic utility of the method was demonstrated by a smooth alkynylation of vinyl iodides derived from natural steroidal hormones.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Artem A Binyakovsky
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
15
|
Valbuena-Rus AM, Savastano M, Arranz-Mascarós P, Bazzicalupi C, Clares MP, Godino-Salido ML, Gutiérrez-Valero MD, Inclán M, Bianchi A, García-España E, López-Garzón R. Noncovalent Assembly and Catalytic Activity of Hybrid Materials Based on Pd Complexes Adsorbed on Multiwalled Carbon Nanotubes, Graphene, and Graphene Nanoplatelets. Inorg Chem 2022; 61:12610-12624. [PMID: 35926979 PMCID: PMC9387097 DOI: 10.1021/acs.inorgchem.2c01559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Green catalysts with excellent performance in Cu-free
Sonogashira
coupling reactions can be prepared by the supramolecular decoration
of graphene surfaces with Pd(II) complexes. Here we report the synthesis,
characterization, and catalytic properties of new catalysts obtained
by the surface decoration of multiwalled carbon nanotubes (MWCNTs),
graphene (G), and graphene nanoplatelets (GNPTs) with Pd(II) complexes
of tetraaza-macrocyclic ligands bearing one or two anchor functionalities.
The decoration of these carbon surfaces takes place under environmentally
friendly conditions (water, room temperature, aerobic) in two steps:
(i) π–π stacking attachment of the ligand via electron-poor
anchor group 6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxo-pyrimidine
and (ii) Pd(II) coordination from PdCl42–. Ligands are more efficiently adsorbed on the flat surfaces of G
and GNPTs than on the curved surfaces of MWCNTs. All catalysts work
very efficiently under mild conditions (50 °C, aerobic, 7 h),
giving a similar high yield (90% or greater) in the coupling of iodobenzene
with phenylacetylene to form diphenylacetylene in one catalytic cycle,
but catalysts based on G and GNPTs (especially on GNPTs) provide greater
catalytic efficiency in reuse (four cycles). The study also revealed
that the active centers of the ligand-Pd type decorating the support
surfaces are much more efficient than the Pd(0) and PdCl42– centers sharing the same surfaces. All of the
results allow a better understanding of the structural factors to
be controlled in order to obtain an optimal efficiency from similar
catalysts based on graphene supports. Green catalysts
with high efficiency in the Cu-free Sonogashira
C−C coupling reactions can be prepared by the supramolecular
functionalization of carbon materials.
Collapse
Affiliation(s)
- Alba M Valbuena-Rus
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| | - Matteo Savastano
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy.,National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | | | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - María P Clares
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - María L Godino-Salido
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| | | | - Mario Inclán
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Antonio Bianchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Enrique García-España
- ICMol, Department of Inorganic Chemistry, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain
| | - Rafael López-Garzón
- Department of Inorganic and Organic Chemistry, University of Jaén, 23071 Jaen, Spain
| |
Collapse
|
16
|
Yamun P, Philip RM, Anilkumar G. Nickel catalyzed hydroamination reactions: An overview. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Abdelbasset WK, Mohsen AM, Kadhim MM, Alkaim AF, Fakri Mustafa Y. Fabrication and Characterization of Copper (II) Complex Supported on Magnetic Nanoparticles as a Green and Efficient Nanomagnetic Catalyst for Synthesis of Diaryl Sulfones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2083196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Ahmed M. Mohsen
- College of Science, Al-Qasim Green University, Department of biology, Al-Qasim, Iraq
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, Iraq
- College of technical engineering, The Islamic University, Najaf, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Ayad F. Alkaim
- Chemistry Department, College of science for women, Hillah, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
18
|
Mohammadi M, Ghorbani-Choghamarani A. Complexation of guanidino containing l-arginine with nickel on silica-modified Hercynite MNPs: a novel catalyst for the Hantzsch synthesis of polyhydroquinolines and 2,3-Dihydroquinazolin-4(1H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04706-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Affiliation(s)
- Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
| | - Valentine P. Ananikov
- Platov South-Russian State Polytechnic University (NPI), Novocherkassk, 346428, Russia
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
20
|
Sahu SK, Choudhury P, Behera PK, Bisoyi T, Sahu RR, Bisoyi A, Gorantla KR, Mallik BS, Mohapatra M, Rout L. An oxygen-bridged bimetallic [Cu–O–Se] catalyst for Sonogashira cross-coupling. NEW J CHEM 2022. [DOI: 10.1039/d1nj04485k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxygen bridged bimetallic CuSeO3·2H2O catalyst is used for Sonogashira cross-coupling under ligand free condition. Catalyst is free from palladium up to 0.2 ppm.
Collapse
Affiliation(s)
| | | | | | - Tanmayee Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Abinash Bisoyi
- Department of Chemistry, Berhampur University, Odisha-760007, India
| | | | - Bhabani S. Mallik
- Department of Chemistry, IIT Hydrabad, Sangareddy, Medak-502285, Telangana, India
| | - Manoj Mohapatra
- Homi Bhaba National Institute, Anushakti Nagar, Bhaba Atomic Research Centre, Bombay-400085, India
| | - Laxmidhar Rout
- Department of Chemistry, Berhampur University, Odisha-760007, India
| |
Collapse
|
21
|
Uredi D, Burra AG, Watkins EB. Rapid Access to 3-Substituted Pyridines and Carbolines via a Domino, Copper-free, Palladium-Catalyzed Sonogashira Cross-Coupling/6π-Aza Cyclization Sequence. J Org Chem 2021; 86:17748-17761. [PMID: 34846892 DOI: 10.1021/acs.joc.1c02034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report a one-pot, three-component method for the preparation of 3-substituted pyridines and carbolines via copper-free, palladium-catalyzed Sonogashira cross-coupling with aryl iodides, followed by 6π-aza cyclization. This arylation cross-coupling/annulation cascade provides easy access to substituted, fused pyridines from readily available substrates in good yields (67-92%) with complete selectivity.
Collapse
Affiliation(s)
- Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson 38305, Tennessee, United States
| | - Amarender Goud Burra
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson 38305, Tennessee, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson 38305, Tennessee, United States
| |
Collapse
|
22
|
Aleena MB, Philip RM, Anilkumar G. Advances in non‐palladium‐catalysed Stille couplings. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mary Baby Aleena
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Rose Mary Philip
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|