1
|
Rao K, Sharma A, Rathod GK, Barahdia AS, Jain R. Aminocarbonylation using CO surrogates. Org Biomol Chem 2024. [PMID: 39666374 DOI: 10.1039/d4ob01639d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aminocarbonylation reactions play a critical role in the synthesis of amides. Traditional aminocarbonylation processes often rely on carbon monoxide (CO) gas, a highly toxic and challenging reagent to handle. Recent advancements in CO surrogates address these challenges. This review looks at the various CO substitutes used in aminocarbonylation reactions. These include metal carbonyls, acids, formates, chloroform, and others that release CO. Use of CO surrogates not only improves safety but also broadens the substrate scope and operational simplicity of the aminocarbonylation reactions. This review provides a summary of recent progress made in aminocarbonylation reactions using different CO surrogates. We discuss key methodologies, catalytic systems, and mechanistic insights, highlighting the efficiency and versatility of CO surrogates in amide bond formation.
Collapse
Affiliation(s)
- Kamya Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Anku Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Gajanan K Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Aman S Barahdia
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab, 160 062, India.
| |
Collapse
|
2
|
Jiang Y, Gu J, Nie W, Lu G, Xin M, Zhu Z, Jiang J, Meng Y, Miao H, Zou Y. Copper‐Catalyzed C(sp
2
)−N Coupling of (
E
)‐3‐(2‐Bromophenysl)‐2‐arylacrylamides for the Synthesis of 3‐Arylquinolin‐2‐ones. ChemistrySelect 2022. [DOI: 10.1002/slct.202204339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yi Jiang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery Guangzhou 510006 P. R. China
| | - Jiayi Gu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery Guangzhou 510006 P. R. China
| | - Wenxing Nie
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Guoqing Lu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Meixiu Xin
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zefeng Zhu
- Department of Pharmacy The Fifth Affiliated Hospital of Jinan University Heyuan 517000 P. R. China
| | - Jiayao Jiang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yingfen Meng
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Hui Miao
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yong Zou
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery Guangzhou 510006 P. R. China
| |
Collapse
|
3
|
Li Y, Xu L, Wei Y. Synthesis of acridines via copper-catalyzed amination/annulation cascades between arylboronic acids and anthranils. Org Biomol Chem 2022; 20:9742-9745. [PMID: 36441231 DOI: 10.1039/d2ob01705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Copper-catalyzed tandem cyclization reactions between arylboronic acids and anthranils have been established, providing new approaches for one-pot assembly of azacycle acridines. This one-pot protocol features simple operation, precious-metal-free conditions and good functional group compatibility, thus providing an efficient approach for the synthesis of a variety of acridines in moderate to good yields.
Collapse
Affiliation(s)
- Yuge Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| | - Yu Wei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
4
|
Ghosh S, Chattopadhyay SK. UNUSUAL REGIOSELECTIVITY IN PALLADIUM‐CATALYZED TANDEM C,H‐ARYLATION AND C,H‐AMIDATION OF CIS‐CINNAMYL HYDROXAMATES: FACILE SYNTHESIS OF 3‐ARYL‐2‐QUINOLONES. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Subhankar Ghosh
- University of Kalyani Faculty of Science Department of Chemistry B-block 741235 Kalyani INDIA
| | | |
Collapse
|
5
|
Liu JL, Wang W, Qi X, Wu XF. Palladium-Catalyzed Reductive Aminocarbonylation of o-Iodophenol-Derived Allyl Ethers with o-Nitrobenzaldehydes to 3-Alkenylquinolin-2(1 H)-ones. Org Lett 2022; 24:2248-2252. [PMID: 35271283 DOI: 10.1021/acs.orglett.2c00648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An attractive palladium-catalyzed reductive aminocarbonylation reaction of allylic ethers has been explored for the synthesis of 3-alkenylquinolin-2(1H)-one derivatives. With Mo(CO)6 as both CO surrogate and reductant, a variety of 3-alkenylquinolin-2(1H)-ones were obtained in good to excellent yields from o-iodophenol-derived allyl ethers with o-nitrobenzaldehydes as the nitrogen sources. This reaction proceeds through a cascade pathway and does not rely on high-pressure CO gas as needed in former allylic carbonylation reactions. This strategy provides a new pathway for the construction of 3-alkenylquinolin-2(1H)-ones.
Collapse
Affiliation(s)
- Jian-Li Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Wei Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
6
|
Dai W, Miao RG, Zhao R, Qi X, Wu XF. Palladium-catalyzed desulfonylative aminocarbonylation of benzylsulfonyl chlorides with o-aminobenzaldehydes/ o-aminoacetophenones for the synthesis of quinoin-2(1 H)-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo01370c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward and efficient synthesis of quinoin-2(1H)-ones has been explored via a palladium-catalyzed desulfonylative aminocarbonylation of benzylsulfonyl chlorides with o-aminobenzaldehydes/o-aminoacetophenones.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ren-Guan Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Ruyi Zhao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, Rostock 18059, Germany
| |
Collapse
|
7
|
Liu Y, Qi X, Wu XF. Palladium-Catalyzed Reductive Aminocarbonylation of Benzylammonium Triflates with o-Nitrobenzaldehydes for the Synthesis of 3-Arylquinolin-2(1 H)-ones. J Org Chem 2021; 86:13824-13832. [PMID: 34542996 DOI: 10.1021/acs.joc.1c01984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed straightforward procedure for the synthesis of 3-arylquinolin-2(1H)-ones has been developed. The synthesis proceeds through a palladium-catalyzed reductive aminocarbonylation reaction of benzylic ammonium triflates with o-nitrobenzaldehydes, and a wide range of 3-arylquinolin-2(1H)-ones was obtained in moderate to good yields with very good functional group compatibility.
Collapse
Affiliation(s)
- Yongzhu Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinxin Qi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
8
|
Palladium-catalyzed carbonylative synthesis of 3-arylquinolin-2(1H)-ones from benzyl chlorides and o-nitrobenzaldehydes. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|