1
|
Formen JSSK, Wolf C. Optical Enantiodifferentiation of Chiral Nitriles. Org Lett 2024; 26:7644-7649. [PMID: 39229874 PMCID: PMC11406584 DOI: 10.1021/acs.orglett.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chiroptical sensing of nitriles is achieved with excellent functional group tolerance by hydrozirconation and subsequent transmetalation of the corresponding iminate to a chromophoric palladium complex. A one-pot workflow that uses the Schwartz reagent and [(η3-1-tert-butylindenyl)(μ-Cl)Pd]2 as sensor generates a palladium complex displaying red-shifted CD inductions and characteristic UV changes. These chiroptical responses are accurately correlated to the enantiomeric ratio and total concentration of the original nitrile.
Collapse
Affiliation(s)
- Jeffrey S S K Formen
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| |
Collapse
|
2
|
Della Sala P, Calice U, Iuliano V, Geremia S, Hickey N, Belviso S, Summa FF, Monaco G, Gaeta C, Superchi S. Chirality Sensing of Cryptochiral Guests with Prism[n]arenes. Chemistry 2024; 30:e202401625. [PMID: 38717117 DOI: 10.1002/chem.202401625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/11/2024]
Abstract
Optical chirality sensing has gained significant attention in recent years. Within this field, the quest for stereodynamic chiroptical probes capable of detecting cryptochiral guests presents a formidable challenge. Macrocycles exhibiting planar chirality have emerged as promising candidates for amplifying the chirality of cryptochiral guests. In this study, we demonstrate that the formation of host-guest complexes between cryptochiral molecules and planar chiral prismarenes triggers electronic circular dichroism (ECD) signals via host-guest complexation-induced chirality amplification. The absolute configuration of the most stable chiral macrocyclic host-guest complex has been established by resorting to both exciton model and DFT computations. Furthermore, we demonstrated that this supramolecular chirality sensing system can be employed to determine the enantiomeric composition of scalemic mixtures by measuring the ECD bands intensity. The information described here opens the way for the use of prismarenes as stereodynamic probes for sensing of cryptochiral guests.
Collapse
Affiliation(s)
- Paolo Della Sala
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Umberto Calice
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Veronica Iuliano
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Silvano Geremia
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Neal Hickey
- Centro di Eccellenza in Biocristallografia, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Sandra Belviso
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesco F Summa
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Guglielmo Monaco
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Carmine Gaeta
- Laboratory of Supramolecular Chemistry, Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084, Fisciano, Salerno, Italy
| | - Stefano Superchi
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
3
|
Nelson E, Bertke JA, Thanzeel FY, Wolf C. Organometallic Chirality Sensing via "Click"-Like η 6-Arene Coordination with an Achiral Cp*Ru(II) Piano Stool Complex. Angew Chem Int Ed Engl 2024; 63:e202404594. [PMID: 38634562 DOI: 10.1002/anie.202404594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
Piano stool complexes have been studied over many years and found widespread applications in organic synthesis, catalysis, materials and drug development. We now report the first examples of quantitative chiroptical molecular recognition of chiral compounds through click-like η6-arene coordination with readily available half sandwich complexes. This conceptually new approach to chirality sensing is based on irreversible acetonitrile displacement of [Cp*Ru(CH3CN)3]PF6 by an aromatic target molecule, a process that is fast and complete within a few minutes at room temperature. The metal coordination coincides with characteristic circular dichroism inductions that can be easily correlated to the absolute configuration and enantiomeric ratio of the bound molecule. A relay assay that decouples the determination of the enantiomeric composition and of the total sample amount by a practical CD/UV measurement protocol was developed and successfully tested. The introduction of piano stool complexes to the chiroptical sensing realm is mechanistically unique and extends the scope of currently known methods with small-molecule probes that require the presence of amino, alcohol, carboxylate or other privileged functional groups for binding of the target compound. A broad application range including pharmaceutically relevant multifunctional molecules and the use in chromatography-free asymmetric reaction analysis are also demonstrated.
Collapse
Affiliation(s)
- Eryn Nelson
- Chemistry Department, Georgetown University, 3700 O St NW, Washington, DC-20057
| | - Jeffery A Bertke
- Chemistry Department, Georgetown University, 3700 O St NW, Washington, DC-20057
| | - F Yushra Thanzeel
- Chemistry Department, Georgetown University, 3700 O St NW, Washington, DC-20057
| | - Christian Wolf
- Chemistry Department, Georgetown University, 3700 O St NW, Washington, DC-20057
| |
Collapse
|
4
|
Formen JSSK, Howard JR, Anslyn EV, Wolf C. Circular Dichroism Sensing: Strategies and Applications. Angew Chem Int Ed Engl 2024; 63:e202400767. [PMID: 38421186 DOI: 10.1002/anie.202400767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
The analysis of the absolute configuration, enantiomeric composition, and concentration of chiral compounds are frequently encountered tasks across the chemical and health sciences. Chiroptical sensing methods can streamline this work and allow high-throughput screening with remarkable reduction of operational time and cost. During the last few years, significant methodological advances with innovative chirality sensing systems, the use of computer-generated calibration curves, machine learning assistance, and chemometric data processing, to name a few, have emerged and are now matched with commercially available multi-well plate CD readers. These developments have reframed the chirality sensing space and provide new opportunities that are of interest to a large group of chemists. This review will discuss chirality sensing strategies and applications with representative small-molecule CD sensors. Emphasis will be given to important milestones and recent advances that accelerate chiral compound analysis by outperforming traditional methods, conquer new directions, and pioneering efforts that lie at the forefront of chiroptical high-throughput screening developments. The goal is to provide the reader with a thorough understanding of the current state and a perspective of future directions of this rapidly emerging field.
Collapse
Affiliation(s)
| | - James R Howard
- Chemistry Department, University of Texas at Austin, Austin TX, USA
| | - Eric V Anslyn
- Chemistry Department, University of Texas at Austin, Austin TX, USA
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington DC, USA
| |
Collapse
|
5
|
Chen J, Fasihianifard P, Raz AAP, Hickey BL, Moreno JL, Chang CEA, Hooley RJ, Zhong W. Selective recognition and discrimination of single isomeric changes in peptide strands with a host : guest sensing array. Chem Sci 2024; 15:1885-1893. [PMID: 38303931 PMCID: PMC10829040 DOI: 10.1039/d3sc06087j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/30/2023] [Indexed: 02/03/2024] Open
Abstract
An indirect competitive binding mechanism can be exploited to allow a combination of cationic fluorophores and water-soluble synthetic receptors to selectively recognize and discriminate peptide strands containing a single isomeric residue in the backbone. Peptide isomerization occurs in long-lived proteins and has been linked with diseases such as Alzheimer's, cataracts and cancer, so isomers are valuable yet underexplored targets for selective recognition. Planar cationic fluorophores can selectively bind hydrophobic, Trp-containing peptide strands in solution, and when paired with receptors that provide a competitive host for the fluorophore, can form a differential sensing array that enables selective discrimination of peptide isomers. Residue variations such as D- and L-Asp, D- and L-isoAsp, D-Ser and D-Glu can all be recognized, simply by their effects on the folded structure of the flexible peptide. Molecular dynamics simulations were applied to determine the most favorable conformation of the peptide : fluorophore conjugate, indicating that favorable π-stacking with internal tryptophan residues in a folded binding pocket enables micromolar binding affinity.
Collapse
Affiliation(s)
- Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| | - Parisa Fasihianifard
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Alexie Andrea P Raz
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Briana L Hickey
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Jose L Moreno
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Chia-En A Chang
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
| | - Richard J Hooley
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside Riverside CA 92521 USA
- Environmental Toxicology Graduate Program, University of California-Riverside Riverside CA 92521 USA
| |
Collapse
|
6
|
Alam M, Agashe C, Gill AK, Varshney R, Tiwari N, Patra D. Discrimination of enantiomers and constitutional isomers by self-generated macroscopic fluid flow. Chem Commun (Camb) 2023; 59:434-437. [PMID: 36515131 DOI: 10.1039/d2cc05545g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The amplification of weak molecular signals to visible output could provide a gateway to the macroscopic world. In this context, supramolecular interfaces were designed by depositing macrocyclic "host" molecules in a multilayer film that can be utilized to discriminate isomers by their fluid flow response upon "host-guest" molecular recognition.
Collapse
Affiliation(s)
- Mujeeb Alam
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Chinmayee Agashe
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Arshdeep Kaur Gill
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Rohit Varshney
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| | - Naveen Tiwari
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, 208016, India
| | - Debabrata Patra
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
7
|
De los Santos ZA, Lynch CC, Wolf C. Dynamic Covalent Optical Chirality Sensing with a Sterically Encumbered Aminoborane. Chemistry 2022; 28:e202202028. [DOI: 10.1002/chem.202202028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Ciarán C. Lynch
- Department of Chemistry Georgetown University Washington DC 20057 USA
| | - Christian Wolf
- Department of Chemistry Georgetown University Washington DC 20057 USA
| |
Collapse
|
8
|
Acyclic cucurbiturils and their applications. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
10
|
Quan M, Pang XY, Jiang W. Circular Dichroism Based Chirality Sensing with Supramolecular Host-Guest Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201258. [PMID: 35315199 DOI: 10.1002/anie.202201258] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/12/2022]
Abstract
Optical methods are promising to address the ever-increasing demands for chirality analysis in drug discovery and related fields because they are amenable to high-throughput screening. Circular dichroism-based chiroptical sensing using host-guest chemistry is especially appealing due to the fast equilibrium kinetics, wide substrate scope, and potential for sustainable development. In this Minireview, we give an overview on this emerging field. General aspects of molecular recognition and chirality transfer are analyzed. Chirality sensors are discussed by dividing them into three classes according to their structural features. Applications of these chirality sensors for chirality analysis of the products of asymmetric reactions and for the real-time monitoring of reaction kinetics are demonstrated with selected examples. Moreover, challenges and research directions in this field are also highlighted.
Collapse
Affiliation(s)
- Mao Quan
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry, Southern University of Science and Technology (SUSTech), Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
11
|
Quan M, Pang X, Jiang W. Circular Dichroism Based Chirality Sensing with Supramolecular Host–Guest Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mao Quan
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology (SUSTech) Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Xin‐Yu Pang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology (SUSTech) Xueyuan Blvd 1088 Shenzhen 518055 China
| | - Wei Jiang
- Shenzhen Grubbs Institute Guangdong Provincial Key Laboratory of Catalysis and Department of Chemistry Southern University of Science and Technology (SUSTech) Xueyuan Blvd 1088 Shenzhen 518055 China
| |
Collapse
|
12
|
Pu L. Chemoselective and Enantioselective Fluorescent Identification of Specific Amino Acid Enantiomers. Chem Commun (Camb) 2022; 58:8038-8048. [DOI: 10.1039/d2cc02363f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantiomers of chiral amino acids play versatile roles in biological systems including humans. They are also very useful in the asymmetric synthesis of diverse chiral organic compounds. Therefore, identification...
Collapse
|
13
|
Abstract
The construction of chemical sensors that can distinguish molecular chirality has attracted increasing attention in recent years due to the significance of chiral organic molecules and the importance of detecting their absolute configuration and chiroptical purity. The supramolecular chirality sensing strategy has shown promising potential due to its advantages of high throughput, sensitivity, and fast chirality detection. This review focuses on chirality sensors based on macrocyclic compounds. Macrocyclic chirality sensors usually have inherent complexing ability towards certain chiral guests, which combined with the signal output components, could offer many unique advantages/properties compared to traditional chiral sensors. Chirality sensing based on macrocyclic sensors has shown rapid progress in recent years. This review summarizes recent advances in chirality sensing based on both achiral and chiral macrocyclic compounds, especially newly emerged macrocyclic molecules.
Collapse
|