1
|
Ma J, Liu XS, Huang X, Si ZY, Liu L. Modular Synthesis of Tetrasubstituted Vinyl Sulfides via One-Pot Sequential Carbene Transfer Reaction from Thiols with α-Diazo Carbonyl Compounds. J Org Chem 2024; 89:11003-11008. [PMID: 39018117 DOI: 10.1021/acs.joc.4c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
We present a one-pot reaction that offers an efficient approach to synthesizing tetrasubstituted vinyl sulfides with high stereoselectivity. This method involves the sequential Wolff rearrangement, ylide formation, and [1,4]-aryl transfer by utilizing aryl and alkyl thiols and α-diazo carbonyl compounds as substrates. Notably, this reaction features commercially available materials, straightforward operation, atom economy, and broad substrate scope. Moreover, the primary photophysical properties (aggregation-induced emission effect) of the products were also investigated, which might be useful in functional materials via structural modification.
Collapse
Affiliation(s)
- Juncai Ma
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xun-Shen Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xinyu Huang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhi-Yao Si
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Li X, Xu Z. Skeletal Editing: Ring Insertion for Direct Access to Heterocycles. Molecules 2024; 29:1920. [PMID: 38731412 PMCID: PMC11085720 DOI: 10.3390/molecules29091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Skeleton editing has rapidly advanced as a synthetic methodology in recent years, significantly streamlining the synthesis process and gaining widespread acceptance in drug synthesis and development. This field encompasses diverse ring reactions, many of which exhibit immense potential in skeleton editing, facilitating the generation of novel ring skeletons. Notably, reactions that involve the cleavage of two distinct rings followed by the reformation of new rings through ring insertion play a pivotal role in the construction of novel ring skeletons. This article aims to compile and systematize this category of reactions, emphasizing the two primary reaction types and offering a thorough exploration of their associated complexities and challenges. Our endeavor is to furnish readers with comprehensive reaction strategies, igniting research interest and injecting fresh impetus into the advancement of this domain.
Collapse
Affiliation(s)
| | - Zhigang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China;
| |
Collapse
|
3
|
He J, Liu XS, Li M, Peng S, Si ZY, Liu L. A rhodium-catalyzed ylide formation/Smiles rearrangement reaction of chalcogenide ether and triazoles. Org Chem Front 2023. [DOI: 10.1039/d3qo00125c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
A Rh(ii)-catalyzed highly stereoselective chalcogenide ylide formation/Smiles rearrangement reaction of diaryl thioether/selenoethers and triazoles was successfully developed.
Collapse
|
4
|
Kotovshchikov YN, Sultanov RH, Latyshev GV, Lukashev NV, Beletskaya IP. Domino assembly of dithiocarbamates via Cu-catalyzed denitrogenative thiolation of iodotriazole-based diazo precursors. Org Biomol Chem 2022; 20:5764-5770. [PMID: 35815554 DOI: 10.1039/d2ob00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient domino approach to assemble benzoxazoles and anthranilamides bearing dithiocarbamate moieties has been developed. The proposed route represents a Cu-catalyzed three-component reaction between readily available 5-iodo-1,2,3-triazoles, amines, and CS2. The cascade transformation is based on a denitrogenative coupling of in situ formed dithiocarbamic acids with diazo intermediates, generated via annulation-triggered triazole ring-opening. This method is applicable to nucleophilic secondary amines and features good functional group compatibility.
Collapse
Affiliation(s)
- Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Rinat H Sultanov
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskiye Gory 1/3, Moscow 119991, Russia.
| |
Collapse
|
5
|
Akter M, Rupa K, Anbarasan P. 1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds. Chem Rev 2022; 122:13108-13205. [DOI: 10.1021/acs.chemrev.1c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
6
|
Voloshkin VA, Kotovshchikov YN, Latyshev GV, Lukashev NV, Beletskaya IP. Annulation-Triggered Denitrogenative Transformations of 2-(5-Iodo-1,2,3-triazolyl)benzoic Acids. J Org Chem 2022; 87:7064-7075. [PMID: 35583492 DOI: 10.1021/acs.joc.2c00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ability of [1,2,3]triazolobenzoxazinones to act as a source of "hidden" diazo group was discovered. These diazo precursors can be easily prepared by the intramolecular cyclization of 2-(5-iodo-1,2,3-triazolyl)benzoic acids. The Cu-catalyzed capture of the hidden diazo group allows for further functionalization through the denitrogenative pathway. The transformations proceed via the formation of either diazoimine or diazoamide intermediates. Novel routes to various anthranilamides as well as thiolated benzoxazinones were developed using the one-pot cyclization/diazo capture procedure.
Collapse
Affiliation(s)
- Vladislav A Voloshkin
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Yury N Kotovshchikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Gennadij V Latyshev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay V Lukashev
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| | - Irina P Beletskaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 1/3 Leninskiye Gory, Moscow 119991, Russia
| |
Collapse
|
7
|
Ji J, Guan C, Wei Q, Chen X, Zhao Y, Liu S. Base-Induced Highly Regioselective Synthesis of N2-Substituted 1,2,3-Triazoles under Mild Conditions in Air. Org Lett 2021; 24:132-136. [PMID: 34928620 DOI: 10.1021/acs.orglett.1c03743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a highly regioselective base-induced synthesis of N2-substituted 1,2,3-triazoles from N-sulfonyl-1,2,3-triazoles and alkyl bromides/alkyl iodides at room temperature. We propose an SN2-like mechanistic pathway to explain the high N2-regioselectivity. The protocol features a broad substrate scope and generates products in good to excellent yields (72-90%).
Collapse
Affiliation(s)
- Jian Ji
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Cong Guan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qinghua Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|